Spaces:
Sleeping
Sleeping
File size: 7,056 Bytes
9d6f8ad 379f058 9d6f8ad f55c77d 9d6f8ad f55c77d 9d6f8ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import torch
import os
from concurrent.futures import ThreadPoolExecutor
from pydub import AudioSegment
import cv2
from pathlib import Path
import subprocess
from pathlib import Path
import av
import imageio
import numpy as np
from rich.progress import track
from tqdm import tqdm
import stf_alternative
import spaces
def exec_cmd(cmd):
subprocess.run(
cmd, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT
)
def images2video(images, wfp, **kwargs):
fps = kwargs.get("fps", 24)
video_format = kwargs.get("format", "mp4") # default is mp4 format
codec = kwargs.get("codec", "libx264") # default is libx264 encoding
quality = kwargs.get("quality") # video quality
pixelformat = kwargs.get("pixelformat", "yuv420p") # video pixel format
image_mode = kwargs.get("image_mode", "rgb")
macro_block_size = kwargs.get("macro_block_size", 2)
ffmpeg_params = ["-crf", str(kwargs.get("crf", 18))]
writer = imageio.get_writer(
wfp,
fps=fps,
format=video_format,
codec=codec,
quality=quality,
ffmpeg_params=ffmpeg_params,
pixelformat=pixelformat,
macro_block_size=macro_block_size,
)
n = len(images)
for i in track(range(n), description="writing", transient=True):
if image_mode.lower() == "bgr":
writer.append_data(images[i][..., ::-1])
else:
writer.append_data(images[i])
writer.close()
# print(f':smiley: Dump to {wfp}\n', style="bold green")
print(f"Dump to {wfp}\n")
def merge_audio_video(video_fp, audio_fp, wfp):
if osp.exists(video_fp) and osp.exists(audio_fp):
cmd = f"ffmpeg -i {video_fp} -i {audio_fp} -c:v copy -c:a aac {wfp} -y"
exec_cmd(cmd)
print(f"merge {video_fp} and {audio_fp} to {wfp}")
else:
print(f"video_fp: {video_fp} or audio_fp: {audio_fp} not exists!")
class STFPipeline:
def __init__(
self,
stf_path: str = "/home/user/app/stf/",
template_video_path: str = "templates/front_one_piece_dress_nodded_cut.webm",
config_path: str = "front_config.json",
checkpoint_path: str = "089.pth",
root_path: str = "works",
wavlm_path: str = "microsoft/wavlm-large",
device: str = "cuda"
):
self.device = device
self.stf_path = stf_path
self.config_path = os.path.join(stf_path, config_path)
self.checkpoint_path = os.path.join(stf_path, checkpoint_path)
self.work_root_path = os.path.join(stf_path, root_path)
self.wavlm_path = wavlm_path
self.template_video_path = template_video_path
# ๋น๋๊ธฐ์ ์ผ๋ก ๋ชจ๋ธ ๋ก๋ฉ
self.model = self.load_model()
self.template = self.create_template()
@spaces.GPU(duration=120)
def load_model(self):
"""๋ชจ๋ธ์ ์์ฑํ๊ณ GPU์ ํ ๋น."""
model = stf_alternative.create_model(
config_path=self.config_path,
checkpoint_path=self.checkpoint_path,
work_root_path=self.work_root_path,
device=self.device,
wavlm_path=self.wavlm_path
)
return model
@spaces.GPU(duration=120)
def create_template(self):
"""ํ
ํ๋ฆฟ ์์ฑ."""
template = stf_alternative.Template(
model=self.model,
config_path=self.config_path,
template_video_path=self.template_video_path
)
return template
def execute(self, audio: str) -> str:
"""์ค๋์ค๋ฅผ ์
๋ ฅ ๋ฐ์ ๋น๋์ค๋ฅผ ์์ฑ."""
# ํด๋ ์์ฑ
Path("dubbing").mkdir(exist_ok=True)
save_path = os.path.join("dubbing", Path(audio).stem + "--lip.mp4")
reader = iter(self.template._get_reader(num_skip_frames=0))
audio_segment = AudioSegment.from_file(audio)
results = []
# ๋น๋๊ธฐ ํ๋ ์ ์์ฑ
with ThreadPoolExecutor(max_workers=4) as executor:
try:
gen_infer = self.template.gen_infer_concurrent(
executor, audio_segment, 0
)
for idx, (it, _) in enumerate(gen_infer):
frame = next(reader)
composed = self.template.compose(idx, frame, it)
results.append(it["pred"])
except StopIteration:
pass
self.images_to_video(results, save_path)
return save_path
@staticmethod
def images_to_video(images, output_path, fps=24):
"""์ด๋ฏธ์ง ๋ฐฐ์ด์ ๋น๋์ค๋ก ๋ณํ."""
writer = imageio.get_writer(output_path, fps=fps, format="mp4", codec="libx264")
for i in track(range(len(images)), description="๋น๋์ค ์์ฑ ์ค"):
writer.append_data(images[i])
writer.close()
print(f"๋น๋์ค ์ ์ฅ ์๋ฃ: {output_path}")
# class STFPipeline:
# def __init__(self,
# stf_path: str = "/home/user/app/stf/",
# device: str = "cuda:0",
# template_video_path: str = "templates/front_one_piece_dress_nodded_cut.webm",
# config_path: str = "front_config.json",
# checkpoint_path: str = "089.pth",
# root_path: str = "works"
# ):
# config_path = os.path.join(stf_path, config_path)
# checkpoint_path = os.path.join(stf_path, checkpoint_path)
# work_root_path = os.path.join(stf_path, root_path)
# model = stf_alternative.create_model(
# config_path=config_path,
# checkpoint_path=checkpoint_path,
# work_root_path=work_root_path,
# device=device,
# wavlm_path="microsoft/wavlm-large",
# )
# self.template = stf_alternative.Template(
# model=model,
# config_path=config_path,
# template_video_path=template_video_path,
# )
# def execute(self, audio: str):
# Path("dubbing").mkdir(exist_ok=True)
# save_path = os.path.join("dubbing", Path(audio).stem+"--lip.mp4")
# reader = iter(self.template._get_reader(num_skip_frames=0))
# audio_segment = AudioSegment.from_file(audio)
# pivot = 0
# results = []
# with ThreadPoolExecutor(4) as p:
# try:
# gen_infer = self.template.gen_infer_concurrent(
# p,
# audio_segment,
# pivot,
# )
# for idx, (it, chunk) in enumerate(gen_infer, pivot):
# frame = next(reader)
# composed = self.template.compose(idx, frame, it)
# frame_name = f"{idx}".zfill(5)+".jpg"
# results.append(it['pred'])
# pivot = idx + 1
# except StopIteration as e:
# pass
# images2video(results, save_path)
# return save_path |