File size: 3,470 Bytes
e3af00f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import dataclasses
import enum
import subprocess
from typing import Callable, Optional


class Framework(enum.Enum):
    TENSORFLOW = "tensorflow"
    PYTORCH = "pytorch"


@dataclasses.dataclass(frozen=True)
class DatasetSpec:
    framework: Optional[Framework]
    create_dataset_fn: Callable


COCO_LABELS = {
    # 0: 'background',
    1: "person",
    2: "bicycle",
    3: "car",
    4: "motorcycle",
    5: "airplane",
    6: "bus",
    7: "train",
    8: "truck",
    9: "boat",
    10: "traffic light",
    11: "fire hydrant",
    13: "stop sign",
    14: "parking meter",
    15: "bench",
    16: "bird",
    17: "cat",
    18: "dog",
    19: "horse",
    20: "sheep",
    21: "cow",
    22: "elephant",
    23: "bear",
    24: "zebra",
    25: "giraffe",
    27: "backpack",
    28: "umbrella",
    31: "handbag",
    32: "tie",
    33: "suitcase",
    34: "frisbee",
    35: "skis",
    36: "snowboard",
    37: "sports ball",
    38: "kite",
    39: "baseball bat",
    40: "baseball glove",
    41: "skateboard",
    42: "surfboard",
    43: "tennis racket",
    44: "bottle",
    46: "wine glass",
    47: "cup",
    48: "fork",
    49: "knife",
    50: "spoon",
    51: "bowl",
    52: "banana",
    53: "apple",
    54: "sandwich",
    55: "orange",
    56: "broccoli",
    57: "carrot",
    58: "hot dog",
    59: "pizza",
    60: "donut",
    61: "cake",
    62: "chair",
    63: "couch",
    64: "potted plant",
    65: "bed",
    67: "dining table",
    70: "toilet",
    72: "tv",
    73: "laptop",
    74: "mouse",
    75: "remote",
    76: "keyboard",
    77: "cell phone",
    78: "microwave",
    79: "oven",
    80: "toaster",
    81: "sink",
    82: "refrigerator",
    84: "book",
    85: "clock",
    86: "vase",
    87: "scissors",
    88: "teddy bear",
    89: "hair drier",
    90: "toothbrush",
}


def _create_tfds_coco2017_validation(batch_size: Optional[int] = None) -> Callable:
    subprocess.run(["pip", "install", "--upgrade", "tensorflow-datasets"], check=True)

    import tensorflow_datasets as tfds  # pytype: disable=import-error

    return tfds.load("coco/2017", split="validation", as_supervised=True, with_info=True, batch_size=batch_size)


TFDS_COCO2017_VALIDATION_DATASET = DatasetSpec(
    framework=Framework.TENSORFLOW,
    create_dataset_fn=_create_tfds_coco2017_validation,
)


def _create_tfds_tf_flowers(batch_size: Optional[int] = None):
    subprocess.run(["pip", "install", "--upgrade", "tensorflow-datasets"], check=True)

    import tensorflow_datasets as tfds  # pytype: disable=import-error

    return tfds.load("tf_flowers", as_supervised=True, with_info=True, batch_size=batch_size)


TFDS_TF_FLOWERS_DATASET = DatasetSpec(
    framework=Framework.TENSORFLOW,
    create_dataset_fn=_create_tfds_tf_flowers,
)


DATASETS_CATALOGUE = [TFDS_COCO2017_VALIDATION_DATASET, TFDS_TF_FLOWERS_DATASET]