File size: 21,546 Bytes
e3af00f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import time
from threading import Event, Thread

import gevent
import numpy as np
import pytest
from gevent.hub import Hub as GeventHub

from pytriton.client import FuturesModelClient, ModelClient
from pytriton.client.exceptions import (
    PyTritonClientClosedError,
    PyTritonClientInvalidUrlError,
    PyTritonClientQueueFullError,
    PyTritonClientTimeoutError,
    PyTritonClientValueError,
)
from pytriton.model_config import DeviceKind
from pytriton.model_config.triton_model_config import TensorSpec, TritonModelConfig

from .client_common import (
    ADD_SUB_WITH_BATCHING_MODEL_CONFIG,
    GRPC_LOCALHOST_URL,
    HTTP_LOCALHOST_URL,
    patch_server_model_addsub_no_batch_ready,
)
from .utils import (
    patch_grpc_client__model_up_and_ready,
    patch_grpc_client__server_up_and_ready,
    patch_http_client__model_up_and_ready,
    patch_http_client__server_up_and_ready,
)

logging.basicConfig(level=logging.DEBUG)
LOGGER = logging.getLogger("test_sync_client")


ADD_SUB_WITHOUT_BATCHING_MODEL_CONFIG = TritonModelConfig(
    model_name="AddSub",
    model_version=1,
    batching=False,
    instance_group={DeviceKind.KIND_CPU: 1},
    inputs=[
        TensorSpec(name="a", shape=(1,), dtype=np.float32),
        TensorSpec(name="b", shape=(1,), dtype=np.float32),
    ],
    outputs=[
        TensorSpec(name="add", shape=(1,), dtype=np.float32),
        TensorSpec(name="sub", shape=(1,), dtype=np.float32),
    ],
    backend_parameters={"shared-memory-socket": "dummy/path"},
)


logging.basicConfig(level=logging.DEBUG)
LOGGER = logging.getLogger("test_sync_client")


def test_wait_for_model_raise_error_when_invalid_url_provided():
    with pytest.raises(PyTritonClientInvalidUrlError, match="Invalid url"):
        with FuturesModelClient(["localhost:8001"], "dummy") as client:  # pytype: disable=wrong-arg-types
            client.wait_for_model(timeout_s=0.1).result()


@patch_server_model_addsub_no_batch_ready
def test_wait_for_model_passes_timeout_to_client(mocker):
    spy_client_close = mocker.spy(ModelClient, ModelClient.close.__name__)
    mock_client_wait_for_model = mocker.patch.object(ModelClient, ModelClient.wait_for_model.__name__)
    mock_client_wait_for_model.return_value = True
    spy_thread_start = mocker.spy(Thread, Thread.start.__name__)
    spy_thread_join = mocker.spy(Thread, Thread.join.__name__)
    spy_get_hub = mocker.spy(gevent, gevent.get_hub.__name__)
    spy_hub_destroy = mocker.spy(GeventHub, GeventHub.destroy.__name__)
    with FuturesModelClient(
        GRPC_LOCALHOST_URL,
        ADD_SUB_WITH_BATCHING_MODEL_CONFIG.model_name,
        str(ADD_SUB_WITH_BATCHING_MODEL_CONFIG.model_version),
        max_workers=1,
    ) as client:
        future = client.wait_for_model(15)
        result = future.result()
        assert result is True
    spy_client_close.assert_called_once()
    mock_client_wait_for_model.assert_called_with(15)
    spy_thread_start.assert_called_once()
    spy_thread_join.assert_called_once()
    spy_get_hub.assert_called_once()
    spy_hub_destroy.assert_called_once()


@patch_server_model_addsub_no_batch_ready
def test_infer_raises_error_when_mixed_args_convention_used(mocker):
    a = np.array([1], dtype=np.float32)
    b = np.array([1], dtype=np.float32)

    init_t_timeout_s = 15.0

    with FuturesModelClient(
        GRPC_LOCALHOST_URL, ADD_SUB_WITH_BATCHING_MODEL_CONFIG.model_name, init_timeout_s=init_t_timeout_s
    ) as client:
        with pytest.raises(
            PyTritonClientValueError,
            match="Use either positional either keyword method arguments convention",
        ):
            client.infer_sample(a, b=b).result()

    with FuturesModelClient(GRPC_LOCALHOST_URL, ADD_SUB_WITH_BATCHING_MODEL_CONFIG.model_name) as client:
        with pytest.raises(
            PyTritonClientValueError,
            match="Use either positional either keyword method arguments convention",
        ):
            client.infer_batch(a, b=b).result()


@patch_server_model_addsub_no_batch_ready
def test_infer_sample_returns_values_creates_client(mocker):
    a = np.array([1], dtype=np.float32)
    b = np.array([2], dtype=np.float32)
    c = np.array([3], dtype=np.float32)

    init_t_timeout_s = 15.0

    mock_client_wait_for_model = mocker.patch.object(ModelClient, ModelClient._wait_and_init_model_config.__name__)
    mock_client_infer_sample = mocker.patch.object(ModelClient, ModelClient.infer_sample.__name__)

    mock_client_infer_sample.return_value = c
    with FuturesModelClient(
        GRPC_LOCALHOST_URL, ADD_SUB_WITH_BATCHING_MODEL_CONFIG.model_name, init_timeout_s=init_t_timeout_s
    ) as client:
        result = client.infer_sample(a=a, b=b).result()
    mock_client_wait_for_model.assert_called_once_with(init_t_timeout_s)
    mock_client_infer_sample.assert_called_once_with(parameters=None, headers=None, a=a, b=b)
    # Check the Python version and use different assertions for cancel_futures
    assert result == c


@patch_server_model_addsub_no_batch_ready
def test_infer_sample_returns_values_creates_client_close_wait(mocker):
    a = np.array([1], dtype=np.float32)
    b = np.array([2], dtype=np.float32)
    c = np.array([3], dtype=np.float32)

    mock_client_infer_sample = mocker.patch.object(ModelClient, ModelClient.infer_sample.__name__)

    # Prevent exit from closing the client
    mocker.patch.object(FuturesModelClient, FuturesModelClient.__exit__.__name__)

    mock_client_infer_sample.return_value = c
    client = FuturesModelClient(GRPC_LOCALHOST_URL, ADD_SUB_WITH_BATCHING_MODEL_CONFIG.model_name)
    result = client.infer_sample(a, b).result()
    client.close(wait=True)
    mock_client_infer_sample.assert_called_once_with(a, b, parameters=None, headers=None)
    assert result == c


@patch_server_model_addsub_no_batch_ready
def test_infer_batch_returns_values_creates_client(mocker):
    a = np.array([1], dtype=np.float32)
    b = np.array([2], dtype=np.float32)
    c = np.array([3], dtype=np.float32)

    init_t_timeout_s = 15.0

    mock_client_infer_batch = mocker.patch.object(ModelClient, ModelClient.infer_batch.__name__)
    mock_client_infer_batch.return_value = c
    with FuturesModelClient(
        GRPC_LOCALHOST_URL, ADD_SUB_WITH_BATCHING_MODEL_CONFIG.model_name, init_timeout_s=init_t_timeout_s
    ) as client:
        result = client.infer_batch(a=a, b=b).result()
        model_config = client.model_config().result()
    mock_client_infer_batch.assert_called_once_with(parameters=None, headers=None, a=a, b=b)
    assert model_config.model_name == ADD_SUB_WITH_BATCHING_MODEL_CONFIG.model_name
    assert result == c


@patch_server_model_addsub_no_batch_ready
def test_infer_sample_list_passed_arguments_returns_arguments(mocker):
    a = np.array([1], dtype=np.float32)
    b = np.array([2], dtype=np.float32)
    ret = np.array([3], dtype=np.float32)

    patch_client_infer_sample = mocker.patch.object(ModelClient, ModelClient.infer_sample.__name__)
    patch_client_infer_sample.return_value = ret
    with FuturesModelClient(GRPC_LOCALHOST_URL, ADD_SUB_WITH_BATCHING_MODEL_CONFIG.model_name) as client:
        return_value = client.infer_sample(a, b).result()
        assert return_value == ret
        patch_client_infer_sample.assert_called_once_with(a, b, parameters=None, headers=None)


@patch_server_model_addsub_no_batch_ready
def test_infer_sample_dict_passed_arguments_returns_arguments(mocker):
    a = np.array([1], dtype=np.float32)
    b = np.array([2], dtype=np.float32)
    ret = np.array([3], dtype=np.float32)

    patch_client_infer_sample = mocker.patch.object(ModelClient, ModelClient.infer_sample.__name__)
    patch_client_infer_sample.return_value = ret
    with FuturesModelClient(GRPC_LOCALHOST_URL, ADD_SUB_WITH_BATCHING_MODEL_CONFIG.model_name) as client:
        return_value = client.infer_sample(a=a, b=b).result()
        assert return_value == ret
        patch_client_infer_sample.assert_called_once_with(a=a, b=b, parameters=None, headers=None)


@patch_server_model_addsub_no_batch_ready
def test_infer_batch_list_passed_arguments_returns_arguments(mocker):
    a = np.array([1], dtype=np.float32)
    b = np.array([2], dtype=np.float32)
    ret = np.array([3], dtype=np.float32)

    patch_client_infer_batch = mocker.patch.object(ModelClient, ModelClient.infer_batch.__name__)
    patch_client_infer_batch.return_value = ret
    with FuturesModelClient(GRPC_LOCALHOST_URL, ADD_SUB_WITH_BATCHING_MODEL_CONFIG.model_name) as client:
        return_value = client.infer_batch(a, b).result()
        assert return_value == ret
        patch_client_infer_batch.assert_called_once_with(a, b, parameters=None, headers=None)


@patch_server_model_addsub_no_batch_ready
def test_infer_batch_dict_passed_arguments_returns_arguments(mocker):
    a = np.array([1], dtype=np.float32)
    b = np.array([2], dtype=np.float32)
    ret = np.array([3], dtype=np.float32)

    patch_client_infer_batch = mocker.patch.object(ModelClient, ModelClient.infer_batch.__name__)
    patch_client_infer_batch.return_value = ret
    with FuturesModelClient(GRPC_LOCALHOST_URL, ADD_SUB_WITH_BATCHING_MODEL_CONFIG.model_name) as client:
        return_value = client.infer_batch(a=a, b=b).result()
        assert return_value == ret
        patch_client_infer_batch.assert_called_once_with(parameters=None, headers=None, a=a, b=b)


@patch_server_model_addsub_no_batch_ready
def test_infer_batch_blocking_behaviour(mocker):
    a = np.array([1], dtype=np.float32)
    b = np.array([2], dtype=np.float32)
    c = np.array([2], dtype=np.float32)
    ret = np.array([3], dtype=np.float32)

    # Set up the queue return values to block the queue and then release it
    infer_called_with_b_event = Event()
    infer_called_with_c_event = Event()

    queue_is_full_event = Event()

    def mock_submit_side_effect(*args, **kwargs):
        LOGGER.debug("mock_submit_side_effect called")
        assert "b" in kwargs
        if kwargs["b"] is b:
            infer_called_with_b_event.set()
        elif kwargs["b"] is c:
            infer_called_with_c_event.set()
        if not queue_is_full_event.is_set():
            LOGGER.debug("mock_submit_side_effect waiting for queue to be full")
            queue_is_full_event.wait()  # Block until the event is set
        LOGGER.debug("mock_submit_side_effect returning")
        return ret

    patch_client_infer_batch = mocker.patch.object(ModelClient, ModelClient.infer_batch.__name__)
    patch_client_infer_batch.side_effect = mock_submit_side_effect

    # Set up the client with a max_queue_size of 1 to easily simulate full condition
    with FuturesModelClient(
        GRPC_LOCALHOST_URL,
        ADD_SUB_WITH_BATCHING_MODEL_CONFIG.model_name,
        max_workers=1,
        max_queue_size=1,
        non_blocking=False,
    ) as client:
        client.model_config().result()  # Wait for the model to be ready
        LOGGER.debug("Client created")
        first_future = client.infer_batch(a=a, b=b)
        LOGGER.debug("First future created")
        infer_called_with_b_event.wait()  # Wait for the first call to be made
        LOGGER.debug("First call made")

        blocked_thread_start_event = Event()
        blocked_thread_result = {}

        def blocked_thread():
            LOGGER.debug("Blocked thread started")
            blocked_thread_start_event.set()
            LOGGER.debug("Blocked thread waiting for queue to be full")
            result = client.infer_batch(a=a, b=c).result()
            LOGGER.debug("Blocked thread got result")
            blocked_thread_result["ret"] = result

        infer_thread = Thread(target=blocked_thread)
        infer_thread.start()
        LOGGER.debug("Waiting for blocked thread to start")
        blocked_thread_start_event.wait()  # Wait for the thread to start
        LOGGER.debug("Blocked thread started")
        time.sleep(0.1)  # Wait a bit to make sure the thread is blocked
        assert not infer_called_with_c_event.is_set(), "infer_batch should not have been called with c yet."

        # The blocking call should be waiting by now, so let's release the block
        LOGGER.debug("Releasing queue")
        queue_is_full_event.set()

        # Wait for the blocked thread to finish
        LOGGER.debug("Waiting for blocked thread to finish")
        infer_thread.join()
        assert blocked_thread_result["ret"] is ret

        # Wait for the first future to finish
        assert first_future.result() is ret

        assert (
            patch_client_infer_batch.call_count == 2
        ), "infer_batch should have been called twice (one blocked, one released)."


@patch_server_model_addsub_no_batch_ready
def test_infer_batch_non_blocking_behaviour(mocker):
    a = np.array([1], dtype=np.float32)
    b = np.array([2], dtype=np.float32)
    c = np.array([2], dtype=np.float32)
    ret = np.array([3], dtype=np.float32)

    # Set up the queue return values to block the queue and then release it
    infer_called_with_b_event = Event()

    queue_is_full_event = Event()

    def mock_submit_side_effect(*args, **kwargs):
        LOGGER.debug("mock_submit_side_effect called")
        infer_called_with_b_event.set()
        if not queue_is_full_event.is_set():
            LOGGER.debug("mock_submit_side_effect waiting for queue to be full")
            queue_is_full_event.wait()  # Block until the event is set
        LOGGER.debug("mock_submit_side_effect returning")
        return ret

    patch_client_infer_batch = mocker.patch.object(ModelClient, ModelClient.infer_batch.__name__)
    patch_client_infer_batch.side_effect = mock_submit_side_effect

    # Set up the client with a max_queue_size of 1 to easily simulate full condition
    with FuturesModelClient(
        GRPC_LOCALHOST_URL,
        ADD_SUB_WITH_BATCHING_MODEL_CONFIG.model_name,
        max_workers=1,
        max_queue_size=1,
        non_blocking=True,
    ) as client:
        LOGGER.debug("Client created")
        while True:
            try:
                client.model_config().result()  # Wait for the model to be ready
                break
            except PyTritonClientQueueFullError:
                LOGGER.debug("Waiting for model to be ready")
                time.sleep(0.1)
                pass
        first_future = client.infer_batch(a=a, b=b)
        LOGGER.debug("First future created")
        infer_called_with_b_event.wait()  # Wait for the first call to be made
        LOGGER.debug("First call made")
        second_future = client.infer_batch(a=a, b=c)
        LOGGER.debug("Second future created")
        with pytest.raises(PyTritonClientQueueFullError):
            LOGGER.debug("Calling infer_batch with queue full")
            client.infer_batch(a=a, b=c)

        # The blocking call should be waiting by now, so let's release the block
        LOGGER.debug("Releasing queue")
        queue_is_full_event.set()

        # Wait for the first future to finish
        assert first_future.result() is ret
        assert second_future.result() is ret

        assert patch_client_infer_batch.call_count == 2, "infer_batch should have been called once."


@patch_server_model_addsub_no_batch_ready
def test_infer_batch_queue_timeout(mocker):
    a = np.array([1], dtype=np.float32)
    b = np.array([2], dtype=np.float32)
    c = np.array([2], dtype=np.float32)
    ret = np.array([3], dtype=np.float32)

    # Set up the queue return values to block the queue and then release it
    infer_called_with_b_event = Event()

    queue_is_full_event = Event()

    def mock_submit_side_effect(*args, **kwargs):
        LOGGER.debug("mock_submit_side_effect called")
        infer_called_with_b_event.set()
        if not queue_is_full_event.is_set():
            LOGGER.debug("mock_submit_side_effect waiting for queue to be full")
            queue_is_full_event.wait()  # Block until the event is set
        LOGGER.debug("mock_submit_side_effect returning")
        return ret

    patch_client_infer_batch = mocker.patch.object(ModelClient, ModelClient.infer_batch.__name__)
    patch_client_infer_batch.side_effect = mock_submit_side_effect

    # Set up the client with a max_queue_size of 1 to easily simulate full condition
    with FuturesModelClient(
        GRPC_LOCALHOST_URL,
        ADD_SUB_WITH_BATCHING_MODEL_CONFIG.model_name,
        max_workers=1,
        max_queue_size=1,
        inference_timeout_s=0.1,
    ) as client:
        LOGGER.debug("Client created")
        client.model_config().result()  # Wait for the model to be ready
        first_future = client.infer_batch(a=a, b=b)
        LOGGER.debug("First future created")
        infer_called_with_b_event.wait()  # Wait for the first call to be made
        LOGGER.debug("First call made")
        second_future = client.infer_batch(a=a, b=c)
        LOGGER.debug("Second future created")
        with pytest.raises(PyTritonClientQueueFullError):
            LOGGER.debug("Calling infer_batch with queue full")
            client.infer_batch(a=a, b=c)

        # The blocking call should be waiting by now, so let's release the block
        LOGGER.debug("Releasing queue")
        queue_is_full_event.set()

        # Wait for the first future to finish
        assert first_future.result() is ret
        assert second_future.result() is ret

        assert patch_client_infer_batch.call_count == 2, "infer_batch should have been called once."


def test_init_raises_error_when_invalid_max_workers_provided(mocker):
    with pytest.raises(ValueError):
        with FuturesModelClient(GRPC_LOCALHOST_URL, ADD_SUB_WITH_BATCHING_MODEL_CONFIG.model_name, max_workers=-1):
            pass


def test_init_raises_error_when_invalid_max_queue_size_provided(mocker):
    with pytest.raises(ValueError):
        with FuturesModelClient(GRPC_LOCALHOST_URL, ADD_SUB_WITH_BATCHING_MODEL_CONFIG.model_name, max_queue_size=-1):
            pass


@pytest.mark.timeout(1.0)
def test_init_http_passes_timeout(mocker):
    with FuturesModelClient("http://localhost:6669", "dummy", init_timeout_s=0.2, inference_timeout_s=0.1) as client:
        with pytest.raises(PyTritonClientTimeoutError):
            client.wait_for_model(timeout_s=0.2).result()


@pytest.mark.timeout(5)
def test_init_grpc_passes_timeout_5(mocker):
    with FuturesModelClient("grpc://localhost:6669", "dummy", init_timeout_s=0.2, inference_timeout_s=0.1) as client:
        with pytest.raises(PyTritonClientTimeoutError):
            client.wait_for_model(timeout_s=0.2).result()


@pytest.mark.timeout(5)
def test_init_http_spaws_several_threads(mocker):
    spy_thread_start = mocker.spy(Thread, Thread.start.__name__)

    with FuturesModelClient("http://localhost:6669", "dummy", init_timeout_s=1, inference_timeout_s=0.2) as client:
        timeout_s = 0.2
        # The list function is used to force the evaluation of the list comprehension before iterating over the futures and
        # calling their result method. This is done to ensure that all the calls occur before the iteration starts,
        # and to verify that five threads are created.
        futures = list([client.wait_for_model(timeout_s=timeout_s) for _ in range(5)])  # noqa: C411
        for future in futures:
            with pytest.raises(PyTritonClientTimeoutError):
                future.result()
        # Reusing client configuration from existing clients forces wait in other threads to finish first configuration
        # request. It sometimes prevents creation of a fifth thread because one of the existing threads can handle another request
        # before the new thread is created. This results in a race condition that affects the number of created threads.
        assert spy_thread_start.call_count > 1


def test_http_client_raises_error_when_used_after_close(mocker):
    patch_http_client__server_up_and_ready(mocker)
    patch_http_client__model_up_and_ready(mocker, ADD_SUB_WITH_BATCHING_MODEL_CONFIG)

    with ModelClient(HTTP_LOCALHOST_URL, "dummy") as client:
        pass

    with pytest.raises(PyTritonClientClosedError):
        client.wait_for_model(timeout_s=0.2)

    a = np.array([1], dtype=np.float32)
    with pytest.raises(PyTritonClientClosedError):
        client.infer_sample(a=a)

    with pytest.raises(PyTritonClientClosedError):
        client.infer_batch(a=[a])


def test_grpc_client_raises_error_when_used_after_close(mocker):
    patch_grpc_client__server_up_and_ready(mocker)
    patch_grpc_client__model_up_and_ready(mocker, ADD_SUB_WITH_BATCHING_MODEL_CONFIG)

    with FuturesModelClient(GRPC_LOCALHOST_URL, "dummy") as client:
        pass

    with pytest.raises(PyTritonClientClosedError):
        client.wait_for_model(timeout_s=0.2).result()

    a = np.array([1], dtype=np.float32)
    with pytest.raises(PyTritonClientClosedError):
        client.infer_sample(a=a).result()

    with pytest.raises(PyTritonClientClosedError):
        client.infer_batch(a=[a]).result()