File size: 23,495 Bytes
e3af00f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
from pathlib import Path

import cv2
import numpy as np
import pandas as pd


def maskblur(mask, kernel_size, sigma=1):
    mask_blur = cv2.GaussianBlur(mask, (kernel_size, kernel_size), sigma)
    return mask_blur


def erosion(mask, kernel_size):
    kernel = np.ones((kernel_size, kernel_size), np.uint8)
    erosion_image = cv2.erode(mask, kernel, iterations=1)  # // make erosion image
    return erosion_image


def dilate(mask, kernel_size):
    kernel = np.ones((kernel_size, kernel_size), np.uint8)
    erosion_image = cv2.dilate(mask, kernel, iterations=1)  # // make erosion image
    return erosion_image


def resize_adapt(model_out, crop_region):
    def inter_alg(target_size, img):
        if isinstance(target_size, tuple):
            w, h = target_size
        else:
            w, h = target_size, target_size
        return inter_alg_(w, h, img)

    def inter_alg_(w, h, img):
        if w * h < img.shape[0] * img.shape[1]:
            return cv2.INTER_AREA
        else:
            return cv2.INTER_CUBIC

    x1, y1, x2, y2 = crop_region
    h, w = y2 - y1 + 1, x2 - x1 + 1
    sz = model_out.shape[0]  # h,w ๋™์ผํ•˜๋‹ค.
    if h == sz and w == sz:
        return model_out

    r = max(h, w) / sz
    max_hw = max(h, w)
    temp_ = cv2.resize(model_out, (max_hw, max_hw), inter_alg(max_hw, model_out))
    temp_ = temp_[
        (max_hw - h) // 2 : (max_hw - h) // 2 + h,
        (max_hw - w) // 2 : (max_hw - w) // 2 + w,
    ]
    return temp_


def get_face_mask(
    img_size, df_fan_row, blur_ratio=0.3, dilate_ratio=0.2, erosion_ratio=0
):
    assert blur_ratio >= 0 and blur_ratio <= 1
    assert erosion_ratio >= 0 and erosion_ratio <= 1
    assert dilate_ratio >= 0 and dilate_ratio <= 1

    def _masking(img, pts, value):
        img = cv2.fillPoly(img, [pts], value)
        return img

    def _get_face_pts_n_box(img_size, df_fan_row):
        box = df_fan_row["cropped_box"]
        pts2d = df_fan_row["pts2d"] - np.array([box[0], box[1]])

        if isinstance(df_fan_row["cropped_size"], float):
            cropped_size = df_fan_row["cropped_size"]
        else:
            cropped_size = df_fan_row["cropped_size"][0]
        ratio = img_size[0] / cropped_size
        pts2d = pts2d * ratio
        xs, ys = pts2d[:, 0], pts2d[:, 1]
        l, t, r, b = min(xs), min(ys), max(xs), max(ys)
        return np.concatenate([pts2d[0:17, :], pts2d[17:27, :][::-1]]).astype(
            np.uint832
        ), (l, t, r, b)

    if df_fan_row["pts2d"] is None:
        mask = np.zeros((img_size[1], img_size[0]), dtype=np.uint8)
        if len(mask.shape) == 2:
            mask = np.expand_dims(mask, axis=2)
        return {"crop": mask, "origin": 1 - mask}

    pts, box = _get_face_pts_n_box(img_size, df_fan_row)
    h = max(box[2] - box[0], box[3] - box[1])
    mask = np.zeros((img_size[1], img_size[0]), dtype=np.uint8)
    mask = _masking(mask, pts, (255))
    if dilate_ratio != 0:
        mask = dilate(mask, int(h * dilate_ratio) // 2 * 2 + 1)
    if erosion_ratio != 0:
        mask = erosion(mask, int(h * erosion_ratio) // 2 * 2 + 1)
    if blur_ratio != 0:
        blur_kernel_size = int(h * blur_ratio) // 2 * 2 + 1
        mask = maskblur(mask, blur_kernel_size, 0)
    mask = mask / 255
    if len(mask.shape) == 2:
        mask = np.expand_dims(mask, axis=2)
    return {"crop": mask, "origin": 1 - mask}


def cromakey_green(img):
    r = img[:, :, 0]
    g = img[:, :, 1]
    b = img[:, :, 2]
    g_alpha = g > 50
    r_alpha = (g * 1.0) > r
    b_alpha = (g * 0.7) > b
    alpha = g_alpha & (r_alpha & b_alpha)
    alpha = (1 - alpha) * 255
    alpha = alpha.astype(np.uint8)

    alpha = maskblur(alpha, kernel_size=13)
    alpha[np.where(alpha > 100)] = 255
    alpha = erosion(alpha, kernel_size=5)

    if len(alpha.shape) == 2:
        alpha2 = np.expand_dims(alpha, axis=2)
    else:
        alpha2 = alpha
    new = np.concatenate((img, alpha2), axis=2)
    return new


def cromakey_green_binary(img):
    img = cromakey_green(img)
    alpha = img[:, :, 3]
    alpha[np.where(alpha <= 128)] = 0
    alpha[np.where(alpha > 128)] = 1


def cromakey_green_hunet_lmy(img):
    r = img[:, :, 0]
    g = img[:, :, 1]
    b = img[:, :, 2]
    g_alpha = g > 70
    r_alpha = g > r
    b_alpha = (g * 0.8) > b
    alpha = g_alpha & (r_alpha & b_alpha)
    alpha = (1 - alpha) * 255
    alpha = alpha.astype(np.uint8)

    alpha = maskblur(alpha, kernel_size=11)
    alpha[np.where(alpha > 100)] = 255
    alpha = maskblur(alpha, kernel_size=3)
    alpha = erosion(alpha, kernel_size=3)

    if len(alpha.shape) == 2:
        alpha2 = np.expand_dims(alpha, axis=2)
    else:
        alpha2 = alpha
    new = np.concatenate((img, alpha2), axis=2)
    return new


# ybm ์˜์ƒ์šฉ ํฌ๋กœ๋งˆํ‚ค ํ•จ์ˆ˜
def cromakey_green_ybm_front(img):
    r, g, b = img[:, :, 0], img[:, :, 1], img[:, :, 2]

    g_alpha = g > 70
    # r_alpha = (g * 0.7) > r
    # b_alpha = (g * 0.7) > b
    r_alpha = g > r
    b_alpha = (g * 0.9) > b

    alpha = g_alpha & (r_alpha & b_alpha)
    alpha = (1 - alpha) * 255
    alpha = alpha.astype(np.uint8)

    alpha = maskblur(alpha, kernel_size=11)
    alpha[np.where(alpha > 100)] = 255
    alpha = maskblur(alpha, kernel_size=3)
    alpha = maskblur(alpha, kernel_size=3)

    grey_alpha = alpha < 255
    g[grey_alpha] = r[grey_alpha] * 0.8

    if len(alpha.shape) == 2:
        alpha2 = np.expand_dims(alpha, axis=2)
    else:
        alpha2 = alpha
    new = np.concatenate((img, alpha2), axis=2)
    return new


# ybm ์˜์ƒ์šฉ ํฌ๋กœ๋งˆํ‚ค ํ•จ์ˆ˜
def cromakey_green_ybm_side(img):
    img = img.copy()
    r, g, b = img[:, :, 0], img[:, :, 1], img[:, :, 2]
    g_alpha = g > 50
    r_alpha = g > r
    b_alpha = (g * 0.9) > b

    alpha = g_alpha & (r_alpha & b_alpha)
    alpha = (1 - alpha) * 255
    alpha = alpha.astype(np.uint8)

    alpha = maskblur(alpha, kernel_size=11)
    alpha[np.where(alpha > 100)] = 255
    alpha = maskblur(alpha, kernel_size=3)
    alpha = maskblur(alpha, kernel_size=3)

    grey_alpha = alpha < 255
    g[grey_alpha] = r[grey_alpha] * 0.8

    if len(alpha.shape) == 2:
        alpha2 = np.expand_dims(alpha, axis=2)
    else:
        alpha2 = alpha
    new = np.concatenate((img, alpha2), axis=2)
    return new


# devin ์˜์ƒ์šฉ ํฌ๋กœ๋งˆํ‚ค ํ•จ์ˆ˜
def cromakey_green_devin_side(img):
    img = img.copy()
    r, g, b = img[:, :, 0], img[:, :, 1], img[:, :, 2]
    g_alpha = g > 70
    r_alpha = (g * 0.8) > r
    # r_alpha = g > r
    b_alpha = (g * 0.9) > b

    alpha = g_alpha & (r_alpha & b_alpha)
    alpha = (1 - alpha) * 255
    alpha = alpha.astype(np.uint8)

    alpha = maskblur(alpha, kernel_size=7, sigma=3)
    alpha[np.where(alpha < 150)] = 0
    alpha = maskblur(alpha, kernel_size=5, sigma=2)

    if len(alpha.shape) == 2:
        alpha = np.expand_dims(alpha, axis=2)

    new = np.concatenate((img, alpha), axis=2)
    return new


def get_cromakey_func(args):
    if "cromakey" not in args.keys():
        return cromakey_green_hunet_lmy
    if "cromakey_green_ybm_front" == args.cromakey:
        return cromakey_green_ybm_front
    if "cromakey_green_ybm_side" == args.cromakey:
        return cromakey_green_ybm_side
    if "cromakey_green_devin_side" == args.cromakey:
        return cromakey_green_devin_side

    raise "cromakey not found"


def compose_default_(model_out, org_image_with_alpha, mask, **kwargs):
    # 1. ๋งˆ์Šคํฌ ์„ž๊ธฐ : ์›๋ž˜ ๋น„๋””์˜ค์˜ ํˆฌ๋ช…๊ฐ’๊ณผ ๊ณ„์‚ฐํ•œ ๋งˆ์Šคํฌ๋ฅผ ์„ž๋Š”๋‹ค.
    mask = mask[:, :, 0]
    mask[np.where(mask > 0)] = 1  # ๋งˆ์Šคํฌ ์˜์—ญ์„ 128 -> 1 ๋กœ ๋งŒ๋“ ๋‹ค.
    model_out[:, :, 3] = (
        org_image_with_alpha[:, :, 3] * (1 - mask) + model_out[:, :, 3] * mask
    )

    # 2. ์„ž์ธ ๋งˆ์Šคํฌ๊ฐ€ ์ข€ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์„ž์ด๋„๋ก ํ•จ.
    model_out[:, :, 3] = maskblur(model_out[:, :, 3], kernel_size=3, sigma=1)
    return model_out


def compose_devin_(model_out, org_image_with_alpha, mask, debug=False, **kwargs):
    mask = mask[:, :, 0]
    mask[np.where(mask > 0)] = 1  # ๋งˆ์Šคํฌ ์˜์—ญ์„ 128 -> 1 ๋กœ ๋งŒ๋“ ๋‹ค.
    mask = mask.astype(np.float32)

    # 1. ๊ธฐ์กด๋งˆ์Šคํฌ์™€ ๊ฒฝ๊ณ„๊ฐ€ ์ž˜ ์•ˆ๋ณด์ด๋„๋ก ๋งˆ์Šคํฌ๋ฅผ ๋ถ€๋“œ๋Ÿฝ๊ฒŒ ๋งŒ๋“ ๋‹ค.
    kernel_size = int(mask.shape[0] * 0.03) // 2 * 2 + 1  # ์ด๋ฏธ์ง€ ํฌ๊ธฐ์˜ 3% ์ •๋„ ๋งˆ์Šคํฌ๋ฅผ ํ™•์žฅํ•œ๋‹ค.
    if debug:
        print(
            f"## compose_devin_: kernel_size:{kernel_size}, mask_height:{mask.shape[0]}"
        )
    if kernel_size >= 3:
        mask = dilate(mask, kernel_size=kernel_size)
        mask = maskblur(mask, kernel_size=kernel_size, sigma=kernel_size // 2)
        mask = maskblur(mask, kernel_size=kernel_size, sigma=kernel_size // 2)
        mask = erosion(mask, kernel_size=3)  # 1pixel ๋งŒ ์ค„์ž„

    # 2. ๋งˆ์Šคํฌ ์„ž๊ธฐ : ์›๋ž˜ ๋น„๋””์˜ค์˜ ํˆฌ๋ช…๊ฐ’๊ณผ ๊ณ„์‚ฐํ•œ ๋งˆ์Šคํฌ๋ฅผ ์„ž๋Š”๋‹ค.
    model_out[:, :, 3] = (
        org_image_with_alpha[:, :, 3] * (1 - mask) + model_out[:, :, 3] * mask
    )

    # 3. ์„ž์ธ ๋งˆ์Šคํฌ๊ฐ€ ๋ถ€๋“œ๋Ÿฝ๊ฒŒ ํ•œ๋ฒˆ๋” ๋ธ”๋Ÿฌ๋ฅผ ํ•œ๋‹ค.
    model_out[:, :, 3] = maskblur(model_out[:, :, 3], kernel_size=3, sigma=1)

    return model_out


def get_compose_mask_func(args):
    if "cromakey" in args.keys():
        if "cromakey_green_devin_side" == args.cromakey:
            return compose_devin_
    if "compose" in args.keys():
        if "compose_smooth" == args.compose:
            return compose_devin_
    return compose_default_


def get_keying_func(template):
    cromakey_func = get_cromakey_func(template.model.args)
    compose_func = get_compose_mask_func(template.model.args)

    def keying_(pred, idx, box=None):
        model_out, mask, alpha = pred["pred"], pred["mask"], pred["img_gt_with_alpha"]

        if pred["filename"].endswith("_no.jpg") or pred["filename"].endswith("_no.png"):
            return alpha[:, :, [2, 1, 0, 3]]

        if (
            alpha.shape[0] != mask.shape[0]
            or alpha.shape[1] != mask.shape[1]
            or alpha.shape[0] != model_out.shape[0]
            or alpha.shape[1] != model_out.shape[1]
        ):
            raise Exception(
                f"not matched keying shape. "
                f"alpha: {alpha.shape[0]}, {alpha.shape[1]}, {alpha.shape[2]}, "
                f"mask: {mask.shape[0]}, {mask.shape[1]}, "
                f"model_out: {model_out.shape[0]}, {model_out.shape[1]}"
            )

        if box is not None:
            model_h = model_out.shape[0]
            box_h = box[3] - box[1]
            if box_h > model_h:
                model_out = resize_adapt(model_out, box)
                mask = resize_adapt(mask, box)
                alpha = resize_adapt(alpha, box)
        model_out = cromakey_func(model_out)
        model_out = compose_func(
            model_out=model_out, org_image_with_alpha=alpha, mask=mask
        )

        return model_out

    return keying_


def get_box_mask(width, height, config, verbose=False):
    def get_mask_(
        width, height, gradation_width, gradation_bottom=None, box_mask_erosion=None
    ):
        mask = np.ones((height, width, 1))
        r = list(range(0, gradation_width, 1))
        for s, e in zip(r, r[1:]):
            g = s / gradation_width
            # print(f'---- s:{s}, e:{e}, g:{g}')
            mask[s:e, s : width - s, :] = g
            mask[height - e : height - s, s : width - s, :] = g
            mask[s : height - s, s:e, :] = g
            mask[s : height - s, width - e : width - s, :] = g
        if gradation_bottom is not None:
            r = list(range(0, gradation_bottom, 1))
            for s, e in zip(r, r[1:]):
                g = s / gradation_bottom
                mask[height - e : height - s, s : width - s, :] = g
        if box_mask_erosion is not None:
            mask = erosion(mask, box_mask_erosion * 2 + 1)
            if len(mask.shape) == 2:
                mask = np.expand_dims(mask, 2)  # mask shape ex: (352,352,1)

        return mask

    gradation_width = int(height * 0.1)
    gradation_bottom = (
        int(height * config["gradation_bottom"])
        if "gradation_bottom" in config.keys()
        else None
    )
    box_mask_erosion = (
        int(height * config["box_mask_erosion"])
        if "box_mask_erosion" in config.keys()
        else None
    )
    # if verbose:
    #    print('gradation_width : ', gradation_width)
    #    print('gradation_bottom : ', gradation_bottom)
    #    print('box_mask_erosion : ', box_mask_erosion)
    mask = get_mask_(width, height, gradation_width, gradation_bottom, box_mask_erosion)
    mask_crop = mask
    mask_origin = 1 - mask
    return {"crop": mask_crop, "origin": mask_origin}


def get_compose_func_without_keying_move(template, ratio, verbose=False):
    args = template.model.args
    df = pd.read_pickle(
        f"{template.crop_mp4_dir}/{Path(template.template_video_path).stem}_000/df_fan.pickle"
    )
    df = df.set_index("frame_idx")
    move_head_box_size = (
        (df.loc[0]["cropped_box"][2] - df.loc[0]["cropped_box"][0] - 20) // 10 * 10
    )

    def resize_and_scale(model_out, head_box_idx):
        # ratio 1.0 ์— ๋งž๋Š” ํฌ๊ธฐ๋กœ resize ํ•˜๊ณ ,
        # ์›๋ž˜ ์˜์ƒ์—์„œ 10์˜ ๋ฐฐ์ˆ˜์— ํ•ด๋‹นํ•˜๋Š” ์œ„์น˜๋กœ (head_box, model_out) ๋ชจ๋‘ ์ž˜๋ผ๋‚ธ๋‹ค.
        head_box = df["cropped_box"][head_box_idx]
        if ratio == 1.0:
            return model_out, head_box

        # ์ผ๋‹จ ์›๋ž˜ ํฌ๊ธฐ๋กœ ๋งŒ๋“ ๋‹ค.
        model_out = resize_adapt(model_out, head_box)

        # ์›๋ž˜ ํฌ๊ธฐ์—์„œ์˜ ๋ฐ•์Šค์—์„œ 10์˜ ๋ฐฐ์ˆ˜์— ํ•ด๋‹นํ•˜๋Š” ์ขŒํ‘œ๋ฅผ ์ฐพ๋Š”๋‹ค.
        l, t = (np.array(head_box[:2]) + 9) // 10 * 10
        new_head_box = np.array(
            [l, t, l + move_head_box_size - 1, t + move_head_box_size - 1]
        )  # ์–‘์ชฝํฌํ•จ์ด๋ผ์„œ 1์„ ๋นผ์ค€๋‹ค.

        # 10์˜ ๋ฐฐ์ˆ˜์— ๋งž์ถฐ์„œ ์ด๋ฏธ์ง€๋ฅผ ์ž˜๋ผ๋‚ธ๋‹ค.
        diff_box = new_head_box - head_box
        new_model_out = model_out[diff_box[1] : diff_box[3], diff_box[0] : diff_box[2]]
        # if verbose and head_box_idx == 0:
        #     print('org head_box:', head_box, ', new_head_box:', new_head_box)
        #     print('alpah2.shape:', model_out.shape, ', new_model_out:', new_model_out.shape)
        if (
            new_model_out.shape[0] % 10 != 0 or new_model_out.shape[1] % 10 != 0
        ):  # ํฌ๊ธฐ๋Š” 10์˜ ๋ฐฐ์ˆ˜์—ฌ์•ผ ํ•œ๋‹ค.
            raise Exception(f"new_model_out.shape % 10 != 0, {new_model_out.shape}")

        # ratio์— ๋งž๋Š” ํฌ๊ธฐ๋กœ ๋ณ€๊ฒฝํ•œ๋‹ค.
        x1, y1, _, _ = np.round(new_head_box * ratio).astype(np.uint8)
        # ์–‘์ชฝํฌํ•จ์ด๋ผ์„œ -1์„ ํ•ด์ค€๋‹ค.
        new_head_box = (
            x1,
            y1,
            x1 + int(move_head_box_size * ratio) - 1,
            y1 + int(move_head_box_size * ratio) - 1,
        )
        new_model_out = resize_adapt(new_model_out, new_head_box)

        # if verbose and head_box_idx == 0:
        #     print('org head_box:', head_box, ', new_head_box:', new_head_box)
        #     print('alpah2.shape:', model_out.shape, ', new_model_out:', new_model_out.shape)

        return new_model_out, new_head_box

    def compose_one(model_out, full_img, head_box_idx):
        model_out, box = resize_and_scale(model_out, head_box_idx)
        x1, y1, x2, y2 = box
        img = resize_adapt(model_out, (x1, y1, x2, y2))
        if (
            "compose" in template.config.keys()
            and template.config.compose == "face_only"
        ):
            row = df.loc[head_box_idx]
            mask_box = get_face_mask(
                (img.shape[1], img.shape[0]), row, **get_compose_option(template.config)
            )
        else:
            mask_box = get_box_mask(
                x2 - x1 + 1, y2 - y1 + 1, config=args, verbose=verbose
            )

        if y2 - y1 + 1 != img.shape[0] or x2 - x1 + 1 != img.shape[1]:
            raise Exception(
                f"not matched compose shape. x2-x1+1: {x2 - x1 + 1}, y2-y1+1:{y2 - y1 + 1}, img: {img.shape[1]}, {img.shape[0]}"
            )

        # Compose the image
        if full_img.shape[2] == 3:
            alpha = np.zeros_like(full_img[:, :, :1])
            alpha.fill(255)
            full_img = np.concatenate([full_img, alpha], axis=2)

        out_memory = full_img.copy()

        alpha = img[:, :, 3]
        alpha = cv2.merge([alpha, alpha, alpha])

        back = out_memory[y1 : y2 + 1, x1 : x2 + 1].copy()
        front = img[:, :, 0:3]

        img = np.concatenate(
            [np.where(alpha < (255, 255, 255), back[:, :, :3], front), back[:, :, 3:]],
            axis=2,
        )
        out_memory[y1 : y2 + 1, x1 : x2 + 1] = (
            full_img[y1 : y2 + 1, x1 : x2 + 1] * mask_box["origin"]
            + img * mask_box["crop"]
        )
        return out_memory

    return compose_one


def get_compose_func_without_keying_default(template, ratio, verbose=False):
    args = template.model.args
    df = pd.read_pickle(
        f"{template.crop_mp4_dir}/{Path(template.template_video_path).stem}_000/df_fan.pickle"
    )
    # sz = df['cropped_size'].values[0]
    # ์›๋ž˜ 4k ํ…œํ”Œ๋ฆฟ์—์„œ ์ถ•์†Œ๋œ ๋น„์œจ๋งŒํผ cropped_box ํฌ๊ธฐ๋ฅผ ์ค„์—ฌ์ค€๋‹ค.
    x1, y1, x2, y2 = np.round(np.array(df["cropped_box"].values[0]) * ratio).astype(
        np.uint8
    )
    del df
    mask_box = get_box_mask(x2 - x1 + 1, y2 - y1 + 1, config=args, verbose=verbose)
    img_size = args.img_size
    if verbose:
        print("croped size: ", x2 - x1 + 1, y2 - y1 + 1)
        print("croped region(x1,y1,x2,y2): ", x1, y1, x2, y2)

    def compose_one(model_out, full_img, _):
        img = resize_adapt(model_out, (x1, y1, x2, y2))
        if y2 - y1 + 1 != img.shape[0] or x2 - x1 + 1 != img.shape[1]:
            raise Exception(
                f"not matched compose shape. x2-x1+1: {x2 - x1 + 1}, y2-y1+1:{y2 - y1 + 1}, img: {img.shape[1]}, {img.shape[0]}"
            )

        # ๋ถ™์—ฌ๋„ฃ๊ธฐ
        if full_img.shape[2] == 3:
            alpha = np.zeros_like(full_img[:, :, :1])
            alpha.fill(255)
            full_img = np.concatenate([full_img, alpha], axis=2)

        out_memory = full_img.copy()

        alpha = img[:, :, 3]
        alpha = cv2.merge([alpha, alpha, alpha])

        back = out_memory[y1 : y2 + 1, x1 : x2 + 1].copy()
        front = img[:, :, 0:3]

        img = np.concatenate(
            [np.where(alpha < (255, 255, 255), back[:, :, :3], front), back[:, :, 3:]],
            axis=2,
        )

        out_memory[y1 : y2 + 1, x1 : x2 + 1] = (
            full_img[y1 : y2 + 1, x1 : x2 + 1] * mask_box["origin"]
            + img * mask_box["crop"]
        )
        return out_memory

    return compose_one


def get_compose_option(config):
    blur_ratio = 0.3
    dilate_ratio = 0.2
    erosion_ratio = 0.0
    if "compose_args" in config.keys():
        if "blur_ratio" in config.compose_args.keys():
            blur_ratio = config.compose_args.blur_ratio
        if "dilate_ratio" in config.compose_args.keys():
            dilate_ratio = config.compose_args.dilate_ratio
        if "erosion_ratio" in config.compose_args.keys():
            erosion_ratio = config.compose_args.erosion_ratio
    return {
        "blur_ratio": blur_ratio,
        "dilate_ratio": dilate_ratio,
        "erosion_ratio": erosion_ratio,
    }


def get_compose_func_without_keying_face_only(template, ratio, verbose=False):
    df = pd.read_pickle(
        f"{template.crop_mp4_dir}/{Path(template.template_video_path).stem}_000/df_fan.pickle"
    )
    x1, y1, x2, y2 = np.round(np.array(df["cropped_box"].values[0]) * ratio).astype(
        np.uint8
    )

    df = df.set_index("frame_idx")
    if verbose:
        print("get_compose_option")
        print(get_compose_option(template.config))

    def compose_one(model_out, full_img, head_box_idx):
        try:
            row = df.loc[head_box_idx]
        except Exception as e:
            print("exception get_compose_func_without_keying_face_only", e)
            raise Exception("exception get_compose_func_without_keying_face_only", e)
        img = resize_adapt(model_out, (x1, y1, x2, y2))
        if y2 - y1 + 1 != img.shape[0] or x2 - x1 + 1 != img.shape[1]:
            raise Exception(
                f"not matched compose shape. x2-x1+1: {x2 - x1 + 1}, y2-y1+1:{y2 - y1 + 1}, img: {img.shape[1]}, {img.shape[0]}"
            )

        mask_box = get_face_mask(
            (img.shape[1], img.shape[0]), row, **get_compose_option(template.config)
        )
        # ๋ถ™์—ฌ๋„ฃ๊ธฐ
        out_memory = full_img.copy()
        out_memory[y1 : y2 + 1, x1 : x2 + 1] = (
            full_img[y1 : y2 + 1, x1 : x2 + 1] * mask_box["origin"]
            + img * mask_box["crop"]
        )
        return out_memory

    return compose_one


# template video ์˜ frame ๊ณผ model inference ๊ฒฐ๊ณผ๋ฅผ ํ•ฉ์„ฑํ•˜๋Š” ํ•จ์ˆ˜๋ฅผ ๋ฆฌํ„ดํ•œ๋‹ค.
# params
#     ratio : ํ…œํ”Œ๋ฆฟ scale ๋น„์œจ.
#             1.0: ํ…œํ”Œ๋ฆฟ ํฌ๊ธฐ ๊ทธ๋Œ€๋กœ
#             0.5: width, height ๋ฅผ ์ ˆ๋ฐ˜์œผ๋กœ ์ค„์ธ ํฌ๊ธฐ
def get_compose_func_without_keying(template, ratio, verbose=False):
    if "move" in template.config.keys() and template.config.move:
        return get_compose_func_without_keying_move(
            template=template, ratio=ratio, verbose=verbose
        )
    if "compose" in template.config.keys() and template.config.compose == "face_only":
        return get_compose_func_without_keying_face_only(
            template=template, ratio=ratio, verbose=verbose
        )

    return get_compose_func_without_keying_default(
        template=template, ratio=ratio, verbose=verbose
    )


def compose_direct(box, model_args, ratio, model_out, full_img):
    x1, y1, x2, y2 = box
    mask_box = get_box_mask(x2 - x1 + 1, y2 - y1 + 1, config=model_args)
    img_size = model_args.img_size

    img = resize_adapt(model_out, (x1, y1, x2, y2))
    if y2 - y1 + 1 != img.shape[0] or x2 - x1 + 1 != img.shape[1]:
        raise Exception(
            f"not matched compose shape. x2-x1+1: {x2 - x1 + 1}, y2-y1+1:{y2 - y1 + 1}, img: {img.shape[1]}, {img.shape[0]}"
        )

    # ๋ถ™์—ฌ๋„ฃ๊ธฐ
    out_memory = full_img.copy()
    out_memory[y1 : y2 + 1, x1 : x2 + 1] = (
        full_img[y1 : y2 + 1, x1 : x2 + 1] * mask_box["origin"] + img * mask_box["crop"]
    )
    return out_memory


def keying_direct(model_args, pred, box=None):
    cromakey_func = get_cromakey_func(model_args)
    compose_func = get_compose_mask_func(model_args)

    model_out, mask, alpha = pred["pred"], pred["mask"], pred["img_gt_with_alpha"]

    if pred["filename"].endswith("_no.jpg") or pred["filename"].endswith("_no.png"):
        return alpha[:, :, [2, 1, 0, 3]]

    if (
        alpha.shape[0] != mask.shape[0]
        or alpha.shape[1] != mask.shape[1]
        or alpha.shape[0] != model_out.shape[0]
        or alpha.shape[1] != model_out.shape[1]
        or alpha.shape[2] != 4
    ):
        raise Exception(
            f"not matched keying shape. "
            f"alpha: {alpha.shape[0]}, {alpha.shape[1]}, {alpha.shape[2]}, "
            f"mask: {mask.shape[0]}, {mask.shape[1]}, "
            f"model_out: {model_out.shape[0]}, {model_out.shape[1]}"
        )

    if box is not None:
        model_h = model_out.shape[0]
        box_h = box[3] - box[1]
        if box_h > model_h:
            model_out = resize_adapt(model_out, box)
            mask = resize_adapt(mask, box)
            alpha = resize_adapt(alpha, box)
    model_out = cromakey_func(model_out)
    model_out = compose_func(model_out=model_out, org_image_with_alpha=alpha, mask=mask)

    return model_out