File size: 5,237 Bytes
e3af00f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import asyncio
import math
from collections import deque
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
from glob import glob
from pathlib import Path

import av
import numpy as np
from PIL import Image
from torch.utils.data import Dataset, default_collate


def get_default_video_reader(
    data_path,
):
    with av.open(str(data_path)) as container:
        for frame in container.decode(video=0):
            yield frame.to_ndarray(
                format="rgb" if data_path.suffix == ".mp4" else "rgba"
            )


accepted_format = set([".webp", ".png", ".jpg"])


def read_image(path):
    return np.array(Image.open(path).convert("RGBA"))


class ImageDataset(Dataset):
    def __init__(self, path, num_skip_frames=0):
        paths = sorted(
            [it for it in glob(f"{path}/*") if Path(it).suffix in accepted_format]
        )
        self.paths = paths[num_skip_frames:] + paths[:num_skip_frames]

    def __getitem__(self, idx):
        return read_image(self.paths[idx])

    def __len__(self):
        return len(self.paths)


class ProcessPoolIterator:
    def __init__(self, dataset, preload=8, num_workers=2):
        self.pool = ProcessPoolExecutor(num_workers)
        self.dataset = dataset
        self.queue = deque()
        self.preload = preload

    def __iter__(self):
        for i in range(min(self.preload, len(self.dataset))):
            self.queue.append(self.pool.submit(self.dataset.__getitem__, i))

        for i in range(self.preload, len(self.dataset)):
            self.queue.append(self.pool.submit(self.dataset.__getitem__, i))
            yield self.queue.popleft().result()

        while len(self.queue):
            yield self.queue.popleft().result()

    def __len__(self):
        return len(self.dataset)


class ProcessPoolBatchIterator:
    def __init__(self, dataset, batch_size, num_workers=4, drop_last=False):
        self.iterator = ProcessPoolIterator(
            dataset=dataset, preload=batch_size, num_workers=num_workers
        )
        self.batch_size = batch_size
        self.drop_last = drop_last

    def __iter__(self):
        iterator = iter(self.iterator)
        while True:
            ret = []
            try:
                for i in range(self.batch_size):
                    ret.append(next(iterator))
                yield default_collate(ret)
            except StopIteration as e:
                if not self.drop_last and ret:
                    yield default_collate(ret)
                break

    def __len__(self):
        return (
            math.floor(len(self.iterator) / self.batch_size)
            if self.drop_last
            else math.ceil(len(self.iterator) / self.batch_size)
        )


class AsyncProcessPoolIterator:
    def __init__(self, dataset, preload=8, num_workers=4):
        self.pool = ProcessPoolExecutor(num_workers)
        self.dataset = dataset
        self.queue = deque()
        self.preload = preload

    async def __aiter__(self):
        loop = asyncio.get_running_loop()

        for i in range(min(self.preload, len(self.dataset))):
            self.queue.append(
                loop.run_in_executor(self.pool, self.dataset.__getitem__, i)
            )

        for i in range(self.preload, len(self.dataset)):
            self.queue.append(
                loop.run_in_executor(self.pool, self.dataset.__getitem__, i)
            )
            yield await self.queue.popleft()

        while len(self.queue):
            yield await self.queue.popleft()

    def __len__(self):
        return len(self.dataset)


class AsyncProcessPoolBatchIterator:
    def __init__(self, dataset, batch_size, num_workers=4, drop_last=False):
        self.iterator = AsyncProcessPoolIterator(
            dataset=dataset, preload=batch_size, num_workers=num_workers
        )
        self.batch_size = batch_size
        self.drop_last = drop_last

    async def __aiter__(self):
        iterator = aiter(self.iterator)
        while True:
            ret = []
            try:
                for _ in range(self.batch_size):
                    ret.append(await anext(iterator))
                yield default_collate(ret)
            except StopAsyncIteration as e:
                if not self.drop_last and ret:
                    yield default_collate(ret)
                break

    def __len__(self):
        return (
            math.floor(len(self.iterator) / self.batch_size)
            if self.drop_last
            else math.ceil(len(self.iterator) / self.batch_size)
        )


def get_image_folder_process_reader(
    data_path,
    num_skip_frames=0,
    num_workers=4,
    preload=16,
):
    dataset = ImageDataset(path=data_path, num_skip_frames=num_skip_frames)
    dataloader = ProcessPoolIterator(
        dataset=dataset,
        num_workers=num_workers,
        preload=preload,
    )

    return dataloader


def get_image_folder_async_process_reader(
    data_path,
    num_skip_frames=0,
    num_workers=4,
    preload=16,
):
    dataset = ImageDataset(path=data_path, num_skip_frames=num_skip_frames)
    dataloader = AsyncProcessPoolIterator(
        dataset=dataset,
        num_workers=num_workers,
        preload=preload,
    )

    return dataloader