Spaces:
Sleeping
Sleeping
File size: 5,492 Bytes
85f2666 5512068 2f1724f 5512068 2f1724f 85f2666 5512068 85f2666 2f1724f 85f2666 5512068 85f2666 2f1724f 5512068 21a7a60 85f2666 343115e 6ecb068 343115e 2f1724f 85f2666 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import torch
import os
from concurrent.futures import ThreadPoolExecutor
from pydub import AudioSegment
import cv2
from pathlib import Path
import subprocess
from pathlib import Path
import av
import imageio
import numpy as np
from rich.progress import track
from tqdm import tqdm
import stf_alternative
def exec_cmd(cmd):
subprocess.run(
cmd, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT
)
def images2video(images, wfp, **kwargs):
fps = kwargs.get("fps", 24)
video_format = kwargs.get("format", "mp4") # default is mp4 format
codec = kwargs.get("codec", "libx264") # default is libx264 encoding
quality = kwargs.get("quality") # video quality
pixelformat = kwargs.get("pixelformat", "yuv420p") # video pixel format
image_mode = kwargs.get("image_mode", "rgb")
macro_block_size = kwargs.get("macro_block_size", 2)
ffmpeg_params = ["-crf", str(kwargs.get("crf", 18))]
writer = imageio.get_writer(
wfp,
fps=fps,
format=video_format,
codec=codec,
quality=quality,
ffmpeg_params=ffmpeg_params,
pixelformat=pixelformat,
macro_block_size=macro_block_size,
)
n = len(images)
for i in track(range(n), description="writing", transient=True):
if image_mode.lower() == "bgr":
writer.append_data(images[i][..., ::-1])
else:
writer.append_data(images[i])
writer.close()
# print(f':smiley: Dump to {wfp}\n', style="bold green")
print(f"Dump to {wfp}\n")
def merge_audio_video(video_fp, audio_fp, wfp):
if osp.exists(video_fp) and osp.exists(audio_fp):
cmd = f"ffmpeg -i {video_fp} -i {audio_fp} -c:v copy -c:a aac {wfp} -y"
exec_cmd(cmd)
print(f"merge {video_fp} and {audio_fp} to {wfp}")
else:
print(f"video_fp: {video_fp} or audio_fp: {audio_fp} not exists!")
class STFPipeline:
def __init__(self,
stf_path: str = "/home/user/app/stf/",
device: str = "cuda:0",
template_video_path: str = "templates/front_one_piece_dress_nodded_cut.webm",
config_path: str = "front_config.json",
checkpoint_path: str = "089.pth",
root_path: str = "works"
):
self.config_path = os.path.join(stf_path, config_path)
self.checkpoint_path = os.path.join(stf_path, checkpoint_path)
self.work_root_path = os.path.join(stf_path, root_path)
self.device = device
self.template_video_path=template_video_path
# model = stf_alternative.create_model(
# config_path=config_path,
# checkpoint_path=checkpoint_path,
# work_root_path=work_root_path,
# device=device,
# wavlm_path="microsoft/wavlm-large",
# )
# self.template = stf_alternative.Template(
# model=model,
# config_path=config_path,
# template_video_path=template_video_path,
# )
print('STFPipeline init')
def execute(self, audio: str):
print('STFPipeline execute')
model = stf_alternative.create_model(
config_path=self.config_path,
checkpoint_path=self.checkpoint_path,
work_root_path=self.work_root_path,
device=self.device,
wavlm_path="microsoft/wavlm-large",
)
print('STFPipeline execute 1')
self.template = stf_alternative.Template(
model=model,
config_path=self.config_path,
template_video_path=self.template_video_path,
)
print('STFPipeline execute 2')
# Path("dubbing").mkdir(exist_ok=True)
# save_path = os.path.join("dubbing", Path(audio).stem+"--lip.mp4")
Path("/tmp/dubbing").mkdir(exist_ok=True)
save_path = os.path.join("/tmp/dubbing", Path(audio).stem+"--lip.mp4")
reader = iter(self.template._get_reader(num_skip_frames=0))
audio_segment = AudioSegment.from_file(audio)
pivot = 0
results = []
try:
# 순차적으로 gen_infer를 실행
gen_infer = self.template.gen_infer(audio_segment, pivot)
for idx, (it, chunk) in enumerate(gen_infer, pivot):
frame = next(reader) # 다음 프레임을 읽음
composed = self.template.compose(idx, frame, it) # 합성 작업 수행
frame_name = f"{idx}".zfill(5) + ".jpg"
results.append(it['pred']) # 결과를 저장
pivot = idx + 1
except StopIteration as e:
pass
# with ThreadPoolExecutor(4) as p:
# try:
# gen_infer = self.template.gen_infer_concurrent(
# p,
# audio_segment,
# pivot,
# )
# for idx, (it, chunk) in enumerate(gen_infer, pivot):
# frame = next(reader)
# composed = self.template.compose(idx, frame, it)
# frame_name = f"{idx}".zfill(5)+".jpg"
# results.append(it['pred'])
# pivot = idx + 1
# except StopIteration as e:
# pass
print('STFPipeline execute 3')
images2video(results, save_path)
return save_path |