File size: 5,492 Bytes
85f2666
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5512068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f1724f
 
5512068
 
 
2f1724f
 
85f2666
 
5512068
 
 
 
 
85f2666
2f1724f
 
85f2666
5512068
 
 
85f2666
 
2f1724f
5512068
21a7a60
 
 
 
 
85f2666
 
 
 
343115e
 
 
 
6ecb068
 
 
 
 
 
 
 
 
343115e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f1724f
 
85f2666
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import torch
import os
from concurrent.futures import ThreadPoolExecutor
from pydub import AudioSegment
import cv2
from pathlib import Path
import subprocess
from pathlib import Path
import av
import imageio
import numpy as np
from rich.progress import track
from tqdm import tqdm

import stf_alternative



def exec_cmd(cmd):
    subprocess.run(
        cmd, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT
    )


def images2video(images, wfp, **kwargs):
    fps = kwargs.get("fps", 24)
    video_format = kwargs.get("format", "mp4")  # default is mp4 format
    codec = kwargs.get("codec", "libx264")  # default is libx264 encoding
    quality = kwargs.get("quality")  # video quality
    pixelformat = kwargs.get("pixelformat", "yuv420p")  # video pixel format
    image_mode = kwargs.get("image_mode", "rgb")
    macro_block_size = kwargs.get("macro_block_size", 2)
    ffmpeg_params = ["-crf", str(kwargs.get("crf", 18))]

    writer = imageio.get_writer(
        wfp,
        fps=fps,
        format=video_format,
        codec=codec,
        quality=quality,
        ffmpeg_params=ffmpeg_params,
        pixelformat=pixelformat,
        macro_block_size=macro_block_size,
    )

    n = len(images)
    for i in track(range(n), description="writing", transient=True):
        if image_mode.lower() == "bgr":
            writer.append_data(images[i][..., ::-1])
        else:
            writer.append_data(images[i])

    writer.close()

    # print(f':smiley: Dump to {wfp}\n', style="bold green")
    print(f"Dump to {wfp}\n")


def merge_audio_video(video_fp, audio_fp, wfp):
    if osp.exists(video_fp) and osp.exists(audio_fp):
        cmd = f"ffmpeg -i {video_fp} -i {audio_fp} -c:v copy -c:a aac {wfp} -y"
        exec_cmd(cmd)
        print(f"merge {video_fp} and {audio_fp} to {wfp}")
    else:
        print(f"video_fp: {video_fp} or audio_fp: {audio_fp} not exists!")




class STFPipeline:
    def __init__(self,
                 stf_path: str = "/home/user/app/stf/",
                 device: str = "cuda:0",
                 template_video_path: str = "templates/front_one_piece_dress_nodded_cut.webm",
                 config_path: str = "front_config.json",
                 checkpoint_path: str = "089.pth",
                 root_path: str = "works"
                 
    ):
        
        self.config_path = os.path.join(stf_path, config_path)
        self.checkpoint_path = os.path.join(stf_path, checkpoint_path)
        self.work_root_path = os.path.join(stf_path, root_path)
        self.device = device
        self.template_video_path=template_video_path
        
        # model = stf_alternative.create_model(
        # config_path=config_path,
        # checkpoint_path=checkpoint_path,
        # work_root_path=work_root_path,
        # device=device,
        # wavlm_path="microsoft/wavlm-large",
        # )
        # self.template = stf_alternative.Template(
        # model=model,
        # config_path=config_path,
        # template_video_path=template_video_path,
        # )

        print('STFPipeline init')
    

    def execute(self, audio: str):

        print('STFPipeline execute')
        
        model = stf_alternative.create_model(
            config_path=self.config_path,
            checkpoint_path=self.checkpoint_path,
            work_root_path=self.work_root_path,
            device=self.device,
            wavlm_path="microsoft/wavlm-large",
        )

        print('STFPipeline execute 1')
        self.template = stf_alternative.Template(
            model=model,
            config_path=self.config_path,
            template_video_path=self.template_video_path,
        )

        print('STFPipeline execute 2')
        
        # Path("dubbing").mkdir(exist_ok=True)
        # save_path = os.path.join("dubbing", Path(audio).stem+"--lip.mp4")
        Path("/tmp/dubbing").mkdir(exist_ok=True)
        save_path = os.path.join("/tmp/dubbing", Path(audio).stem+"--lip.mp4")
        
        reader = iter(self.template._get_reader(num_skip_frames=0))
        audio_segment = AudioSegment.from_file(audio)
        pivot = 0
        results = []


        
        try:
            # 순차적으로 gen_infer를 실행
            gen_infer = self.template.gen_infer(audio_segment, pivot)
    
            for idx, (it, chunk) in enumerate(gen_infer, pivot):
                frame = next(reader)  # 다음 프레임을 읽음
                composed = self.template.compose(idx, frame, it)  # 합성 작업 수행
                frame_name = f"{idx}".zfill(5) + ".jpg"
                results.append(it['pred'])  # 결과를 저장
            pivot = idx + 1

        except StopIteration as e:
            pass


        
        # with ThreadPoolExecutor(4) as p:
        #     try:

        #         gen_infer = self.template.gen_infer_concurrent(
        #             p,
        #             audio_segment,
        #             pivot,
        #         )
        #         for idx, (it, chunk) in enumerate(gen_infer, pivot):
        #             frame = next(reader)
        #             composed = self.template.compose(idx, frame, it)
        #             frame_name = f"{idx}".zfill(5)+".jpg"
        #             results.append(it['pred'])
        #         pivot = idx + 1
        #     except StopIteration as e:
        #         pass

        print('STFPipeline execute 3')
        images2video(results, save_path)
                                
        return save_path