yerang's picture
Upload 1110 files
e3af00f verified
raw
history blame
5.24 kB
import asyncio
import math
from collections import deque
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
from glob import glob
from pathlib import Path
import av
import numpy as np
from PIL import Image
from torch.utils.data import Dataset, default_collate
def get_default_video_reader(
data_path,
):
with av.open(str(data_path)) as container:
for frame in container.decode(video=0):
yield frame.to_ndarray(
format="rgb" if data_path.suffix == ".mp4" else "rgba"
)
accepted_format = set([".webp", ".png", ".jpg"])
def read_image(path):
return np.array(Image.open(path).convert("RGBA"))
class ImageDataset(Dataset):
def __init__(self, path, num_skip_frames=0):
paths = sorted(
[it for it in glob(f"{path}/*") if Path(it).suffix in accepted_format]
)
self.paths = paths[num_skip_frames:] + paths[:num_skip_frames]
def __getitem__(self, idx):
return read_image(self.paths[idx])
def __len__(self):
return len(self.paths)
class ProcessPoolIterator:
def __init__(self, dataset, preload=8, num_workers=2):
self.pool = ProcessPoolExecutor(num_workers)
self.dataset = dataset
self.queue = deque()
self.preload = preload
def __iter__(self):
for i in range(min(self.preload, len(self.dataset))):
self.queue.append(self.pool.submit(self.dataset.__getitem__, i))
for i in range(self.preload, len(self.dataset)):
self.queue.append(self.pool.submit(self.dataset.__getitem__, i))
yield self.queue.popleft().result()
while len(self.queue):
yield self.queue.popleft().result()
def __len__(self):
return len(self.dataset)
class ProcessPoolBatchIterator:
def __init__(self, dataset, batch_size, num_workers=4, drop_last=False):
self.iterator = ProcessPoolIterator(
dataset=dataset, preload=batch_size, num_workers=num_workers
)
self.batch_size = batch_size
self.drop_last = drop_last
def __iter__(self):
iterator = iter(self.iterator)
while True:
ret = []
try:
for i in range(self.batch_size):
ret.append(next(iterator))
yield default_collate(ret)
except StopIteration as e:
if not self.drop_last and ret:
yield default_collate(ret)
break
def __len__(self):
return (
math.floor(len(self.iterator) / self.batch_size)
if self.drop_last
else math.ceil(len(self.iterator) / self.batch_size)
)
class AsyncProcessPoolIterator:
def __init__(self, dataset, preload=8, num_workers=4):
self.pool = ProcessPoolExecutor(num_workers)
self.dataset = dataset
self.queue = deque()
self.preload = preload
async def __aiter__(self):
loop = asyncio.get_running_loop()
for i in range(min(self.preload, len(self.dataset))):
self.queue.append(
loop.run_in_executor(self.pool, self.dataset.__getitem__, i)
)
for i in range(self.preload, len(self.dataset)):
self.queue.append(
loop.run_in_executor(self.pool, self.dataset.__getitem__, i)
)
yield await self.queue.popleft()
while len(self.queue):
yield await self.queue.popleft()
def __len__(self):
return len(self.dataset)
class AsyncProcessPoolBatchIterator:
def __init__(self, dataset, batch_size, num_workers=4, drop_last=False):
self.iterator = AsyncProcessPoolIterator(
dataset=dataset, preload=batch_size, num_workers=num_workers
)
self.batch_size = batch_size
self.drop_last = drop_last
async def __aiter__(self):
iterator = aiter(self.iterator)
while True:
ret = []
try:
for _ in range(self.batch_size):
ret.append(await anext(iterator))
yield default_collate(ret)
except StopAsyncIteration as e:
if not self.drop_last and ret:
yield default_collate(ret)
break
def __len__(self):
return (
math.floor(len(self.iterator) / self.batch_size)
if self.drop_last
else math.ceil(len(self.iterator) / self.batch_size)
)
def get_image_folder_process_reader(
data_path,
num_skip_frames=0,
num_workers=4,
preload=16,
):
dataset = ImageDataset(path=data_path, num_skip_frames=num_skip_frames)
dataloader = ProcessPoolIterator(
dataset=dataset,
num_workers=num_workers,
preload=preload,
)
return dataloader
def get_image_folder_async_process_reader(
data_path,
num_skip_frames=0,
num_workers=4,
preload=16,
):
dataset = ImageDataset(path=data_path, num_skip_frames=num_skip_frames)
dataloader = AsyncProcessPoolIterator(
dataset=dataset,
num_workers=num_workers,
preload=preload,
)
return dataloader