Spaces:
Sleeping
Sleeping
#!/usr/bin/env python3 | |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Client for identity_python sample server.""" | |
import logging | |
import random | |
import numpy as np | |
from pytriton.client import ModelClient | |
logger = logging.getLogger("examples.identity_python.client") | |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(name)s: %(message)s") | |
batch_size = 4 | |
input1_batch = [[random.random(), random.random(), random.random(), random.random()]] * batch_size | |
input2_batch = [[b"\xff\x00\x00\x00"]] * batch_size | |
logger.info(f"INPUT_1: {input1_batch}") | |
logger.info(f"INPUT_2: {input2_batch}") | |
input1_batch = np.array(input1_batch, dtype=np.float64) | |
input2_batch = np.array(input2_batch, dtype=object) # use dtype=object to avoid trimming of `\x00` bytes by numpy | |
with ModelClient("localhost", "Identity") as client: | |
logger.info("Sending request") | |
result_dict = client.infer_batch(input1_batch, input2_batch) | |
logger.info(f"results: {result_dict}") | |
for output_name, output_batch in result_dict.items(): | |
logger.info(f"{output_name}: {output_batch.tolist()}") | |