yerang's picture
Upload 1110 files
e3af00f verified
raw
history blame
5.86 kB
import pathlib
import subprocess
import tempfile
import av
import numpy as np
from PIL import Image
def alpha_crop_detect(path):
result = subprocess.check_output(
[
"bash",
"-c",
f"""ffmpeg -c:v libvpx -i {path} -filter_complex "[0:v]alphaextract, cropdetect=limit=0:round=16:reset=0" -f null - 2>&1 | grep -oP 'crop=\K\d+:\d+:\d+:\d+' """,
]
)
return result.decode().strip().split("\n")[-1]
def crop_resize_overlay(
path, background_path, range, out, left=0.5, top=0.15, height=0.85, crf=17
):
with av.open(path, "r") as f:
fps = f.streams.video[0].base_rate
with av.open(background_path, "r") as f:
background_width, background_height = (
f.streams.video[0].width,
f.streams.video[0].height,
)
if isinstance(top, float):
top = int(background_height * top)
if isinstance(height, float):
height = int(background_height * height)
height -= height % 2
w, h, _, _ = map(int, range.split(":"))
width = int(height / h * w)
width -= width % 2
if isinstance(left, float):
left = int(background_width * left) - width // 2
subprocess.call(
[
"bash",
"-c",
f"""ffmpeg -y -c:v libvpx -r {fps} -i {path} -r {fps} -i {background_path} -filter_complex "[0:v]crop={range},scale={width}:{height} [vidi]; [1:v][vidi] overlay={left}:{top}" -crf {crf} -pix_fmt yuva420p -c:v libvpx-vp9 -c:a copy {out}""",
]
)
return background_width, background_height, int(fps), (left, top, height)
import json
import os
import shutil
import tempfile
from pathlib import Path
import av
import pandas as pd
import stf_alternative
from stf_alternative.util import get_crop_mp4_dir, get_frame_dir, get_preprocess_dir
from stf_tools.silent import create_silent_video
from stf_tools.writers import WebmWriter
def create_template(
template_video_path,
background_path,
out_path,
config_path,
reference_face,
work_root_path,
checkpoint_path,
left,
top,
height,
crf=17,
):
crop_range = alpha_crop_detect(template_video_path)
result_width, result_height, fps, (left, top, height) = crop_resize_overlay(
template_video_path,
background_path,
crop_range,
out_path,
left=left,
top=top,
height=height,
crf=crf,
)
stf_alternative.preprocess_template(
config_path=config_path,
template_video_path=template_video_path,
reference_face=reference_face,
work_root_path=work_root_path,
template_frame_ratio=1.0,
template_video_ratio=[1.0],
silent_video_path=None,
callback=None,
device="cuda:0",
verbose=True,
save_frames=False,
)
model = stf_alternative.create_model(
config_path=config_path,
checkpoint_path=checkpoint_path,
work_root_path=work_root_path,
device="cuda:0",
verbose=True,
wavlm_path="microsoft/wavlm-large",
)
preprocess_dir = Path(get_preprocess_dir(work_root_path, model.args.name))
crop_mp4_dir = Path(get_crop_mp4_dir(preprocess_dir, template_video_path))
dataset_dir = crop_mp4_dir / f"{Path(template_video_path).stem}_000"
template_frames_path = Path(
get_frame_dir(preprocess_dir, template_video_path, ratio=1.0)
)
with open(preprocess_dir / "metadata.json", "w") as f:
json.dump(
{
"fps": fps,
"width": result_width,
"height": result_height,
},
f,
)
df = pd.read_pickle(dataset_dir / "df_fan.pickle")
w, h, x, y = map(int, crop_range.split(":"))
scale = height / h
id_set = set()
for it in df["cropped_box"]:
if id(it) in id_set:
continue
id_set.add(id(it))
x1, y1, x2, y2 = it
x1 = (x1 - x) * scale + left
x2 = (x2 - x) * scale + left
y1 = (y1 - y) * scale + top
y2 = (y2 - y) * scale + top
it[:] = (x1, y1, x2, y2)
df.to_pickle(dataset_dir / "df_fan.pickle")
template_frames_path.mkdir(exist_ok=True, parents=True)
with av.open(out_path) as container:
for frame in container.decode(video=0):
Image.fromarray(frame.to_ndarray(format="rgb24"), mode="RGB").save(
f"{template_frames_path}/%05d.webp" % frame.index,
format="webp",
lossless=True,
)
with tempfile.TemporaryDirectory() as tempdir:
silent_video_path = f"{tempdir}/silent.webm"
template = stf_alternative.Template(
config_path=config_path,
model=model,
template_video_path=template_video_path,
wav_std=False,
ref_wav=None,
verbose=True,
)
writer = WebmWriter(
silent_video_path,
width=result_width,
height=result_height,
fps=fps,
crf=crf,
audio_sample_rate=16000,
quiet=False,
)
create_silent_video(template, writer)
silent_frames_path = Path(
get_frame_dir(preprocess_dir, silent_video_path, ratio=1.0)
)
silent_frames_path.mkdir(exist_ok=True, parents=True)
with av.open(silent_video_path) as container:
for frame in container.decode(video=0):
Image.fromarray(frame.to_ndarray(format="rgb24"), mode="RGB").save(
f"{silent_frames_path}/%05d.webp" % frame.index,
format="webp",
lossless=True,
)
shutil.rmtree(template_frames_path, ignore_errors=False)
silent_frames_path.rename(template_frames_path)