Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
# @Organization : insightface.ai | |
# @Author : Jia Guo | |
# @Time : 2021-09-18 | |
# @Function : | |
from __future__ import division | |
import datetime | |
import numpy as np | |
import onnx | |
import onnxruntime | |
import os | |
import os.path as osp | |
import cv2 | |
import sys | |
def softmax(z): | |
assert len(z.shape) == 2 | |
s = np.max(z, axis=1) | |
s = s[:, np.newaxis] # necessary step to do broadcasting | |
e_x = np.exp(z - s) | |
div = np.sum(e_x, axis=1) | |
div = div[:, np.newaxis] # dito | |
return e_x / div | |
def distance2bbox(points, distance, max_shape=None): | |
"""Decode distance prediction to bounding box. | |
Args: | |
points (Tensor): Shape (n, 2), [x, y]. | |
distance (Tensor): Distance from the given point to 4 | |
boundaries (left, top, right, bottom). | |
max_shape (tuple): Shape of the image. | |
Returns: | |
Tensor: Decoded bboxes. | |
""" | |
x1 = points[:, 0] - distance[:, 0] | |
y1 = points[:, 1] - distance[:, 1] | |
x2 = points[:, 0] + distance[:, 2] | |
y2 = points[:, 1] + distance[:, 3] | |
if max_shape is not None: | |
x1 = x1.clamp(min=0, max=max_shape[1]) | |
y1 = y1.clamp(min=0, max=max_shape[0]) | |
x2 = x2.clamp(min=0, max=max_shape[1]) | |
y2 = y2.clamp(min=0, max=max_shape[0]) | |
return np.stack([x1, y1, x2, y2], axis=-1) | |
def distance2kps(points, distance, max_shape=None): | |
"""Decode distance prediction to bounding box. | |
Args: | |
points (Tensor): Shape (n, 2), [x, y]. | |
distance (Tensor): Distance from the given point to 4 | |
boundaries (left, top, right, bottom). | |
max_shape (tuple): Shape of the image. | |
Returns: | |
Tensor: Decoded bboxes. | |
""" | |
preds = [] | |
for i in range(0, distance.shape[1], 2): | |
px = points[:, i%2] + distance[:, i] | |
py = points[:, i%2+1] + distance[:, i+1] | |
if max_shape is not None: | |
px = px.clamp(min=0, max=max_shape[1]) | |
py = py.clamp(min=0, max=max_shape[0]) | |
preds.append(px) | |
preds.append(py) | |
return np.stack(preds, axis=-1) | |
class RetinaFace: | |
def __init__(self, model_file=None, session=None): | |
import onnxruntime | |
self.model_file = model_file | |
self.session = session | |
self.taskname = 'detection' | |
if self.session is None: | |
assert self.model_file is not None | |
assert osp.exists(self.model_file) | |
self.session = onnxruntime.InferenceSession(self.model_file, None) | |
self.center_cache = {} | |
self.nms_thresh = 0.4 | |
self.det_thresh = 0.5 | |
self._init_vars() | |
def _init_vars(self): | |
input_cfg = self.session.get_inputs()[0] | |
input_shape = input_cfg.shape | |
#print(input_shape) | |
if isinstance(input_shape[2], str): | |
self.input_size = None | |
else: | |
self.input_size = tuple(input_shape[2:4][::-1]) | |
#print('image_size:', self.image_size) | |
input_name = input_cfg.name | |
self.input_shape = input_shape | |
outputs = self.session.get_outputs() | |
output_names = [] | |
for o in outputs: | |
output_names.append(o.name) | |
self.input_name = input_name | |
self.output_names = output_names | |
self.input_mean = 127.5 | |
self.input_std = 128.0 | |
#print(self.output_names) | |
#assert len(outputs)==10 or len(outputs)==15 | |
self.use_kps = False | |
self._anchor_ratio = 1.0 | |
self._num_anchors = 1 | |
if len(outputs)==6: | |
self.fmc = 3 | |
self._feat_stride_fpn = [8, 16, 32] | |
self._num_anchors = 2 | |
elif len(outputs)==9: | |
self.fmc = 3 | |
self._feat_stride_fpn = [8, 16, 32] | |
self._num_anchors = 2 | |
self.use_kps = True | |
elif len(outputs)==10: | |
self.fmc = 5 | |
self._feat_stride_fpn = [8, 16, 32, 64, 128] | |
self._num_anchors = 1 | |
elif len(outputs)==15: | |
self.fmc = 5 | |
self._feat_stride_fpn = [8, 16, 32, 64, 128] | |
self._num_anchors = 1 | |
self.use_kps = True | |
def prepare(self, ctx_id, **kwargs): | |
if ctx_id<0: | |
self.session.set_providers(['CPUExecutionProvider']) | |
nms_thresh = kwargs.get('nms_thresh', None) | |
if nms_thresh is not None: | |
self.nms_thresh = nms_thresh | |
det_thresh = kwargs.get('det_thresh', None) | |
if det_thresh is not None: | |
self.det_thresh = det_thresh | |
input_size = kwargs.get('input_size', None) | |
if input_size is not None: | |
if self.input_size is not None: | |
print('warning: det_size is already set in detection model, ignore') | |
else: | |
self.input_size = input_size | |
def forward(self, img, threshold): | |
scores_list = [] | |
bboxes_list = [] | |
kpss_list = [] | |
input_size = tuple(img.shape[0:2][::-1]) | |
blob = cv2.dnn.blobFromImage(img, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True) | |
net_outs = self.session.run(self.output_names, {self.input_name : blob}) | |
input_height = blob.shape[2] | |
input_width = blob.shape[3] | |
fmc = self.fmc | |
for idx, stride in enumerate(self._feat_stride_fpn): | |
scores = net_outs[idx] | |
bbox_preds = net_outs[idx+fmc] | |
bbox_preds = bbox_preds * stride | |
if self.use_kps: | |
kps_preds = net_outs[idx+fmc*2] * stride | |
height = input_height // stride | |
width = input_width // stride | |
K = height * width | |
key = (height, width, stride) | |
if key in self.center_cache: | |
anchor_centers = self.center_cache[key] | |
else: | |
#solution-1, c style: | |
#anchor_centers = np.zeros( (height, width, 2), dtype=np.float32 ) | |
#for i in range(height): | |
# anchor_centers[i, :, 1] = i | |
#for i in range(width): | |
# anchor_centers[:, i, 0] = i | |
#solution-2: | |
#ax = np.arange(width, dtype=np.float32) | |
#ay = np.arange(height, dtype=np.float32) | |
#xv, yv = np.meshgrid(np.arange(width), np.arange(height)) | |
#anchor_centers = np.stack([xv, yv], axis=-1).astype(np.float32) | |
#solution-3: | |
anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32) | |
#print(anchor_centers.shape) | |
anchor_centers = (anchor_centers * stride).reshape( (-1, 2) ) | |
if self._num_anchors>1: | |
anchor_centers = np.stack([anchor_centers]*self._num_anchors, axis=1).reshape( (-1,2) ) | |
if len(self.center_cache)<100: | |
self.center_cache[key] = anchor_centers | |
pos_inds = np.where(scores>=threshold)[0] | |
bboxes = distance2bbox(anchor_centers, bbox_preds) | |
pos_scores = scores[pos_inds] | |
pos_bboxes = bboxes[pos_inds] | |
scores_list.append(pos_scores) | |
bboxes_list.append(pos_bboxes) | |
if self.use_kps: | |
kpss = distance2kps(anchor_centers, kps_preds) | |
#kpss = kps_preds | |
kpss = kpss.reshape( (kpss.shape[0], -1, 2) ) | |
pos_kpss = kpss[pos_inds] | |
kpss_list.append(pos_kpss) | |
return scores_list, bboxes_list, kpss_list | |
def detect(self, img, input_size = None, max_num=0, metric='default'): | |
assert input_size is not None or self.input_size is not None | |
input_size = self.input_size if input_size is None else input_size | |
im_ratio = float(img.shape[0]) / img.shape[1] | |
model_ratio = float(input_size[1]) / input_size[0] | |
if im_ratio>model_ratio: | |
new_height = input_size[1] | |
new_width = int(new_height / im_ratio) | |
else: | |
new_width = input_size[0] | |
new_height = int(new_width * im_ratio) | |
det_scale = float(new_height) / img.shape[0] | |
resized_img = cv2.resize(img, (new_width, new_height)) | |
det_img = np.zeros( (input_size[1], input_size[0], 3), dtype=np.uint8 ) | |
det_img[:new_height, :new_width, :] = resized_img | |
scores_list, bboxes_list, kpss_list = self.forward(det_img, self.det_thresh) | |
scores = np.vstack(scores_list) | |
scores_ravel = scores.ravel() | |
order = scores_ravel.argsort()[::-1] | |
bboxes = np.vstack(bboxes_list) / det_scale | |
if self.use_kps: | |
kpss = np.vstack(kpss_list) / det_scale | |
pre_det = np.hstack((bboxes, scores)).astype(np.float32, copy=False) | |
pre_det = pre_det[order, :] | |
keep = self.nms(pre_det) | |
det = pre_det[keep, :] | |
if self.use_kps: | |
kpss = kpss[order,:,:] | |
kpss = kpss[keep,:,:] | |
else: | |
kpss = None | |
if max_num > 0 and det.shape[0] > max_num: | |
area = (det[:, 2] - det[:, 0]) * (det[:, 3] - | |
det[:, 1]) | |
img_center = img.shape[0] // 2, img.shape[1] // 2 | |
offsets = np.vstack([ | |
(det[:, 0] + det[:, 2]) / 2 - img_center[1], | |
(det[:, 1] + det[:, 3]) / 2 - img_center[0] | |
]) | |
offset_dist_squared = np.sum(np.power(offsets, 2.0), 0) | |
if metric=='max': | |
values = area | |
else: | |
values = area - offset_dist_squared * 2.0 # some extra weight on the centering | |
bindex = np.argsort( | |
values)[::-1] # some extra weight on the centering | |
bindex = bindex[0:max_num] | |
det = det[bindex, :] | |
if kpss is not None: | |
kpss = kpss[bindex, :] | |
return det, kpss | |
def nms(self, dets): | |
thresh = self.nms_thresh | |
x1 = dets[:, 0] | |
y1 = dets[:, 1] | |
x2 = dets[:, 2] | |
y2 = dets[:, 3] | |
scores = dets[:, 4] | |
areas = (x2 - x1 + 1) * (y2 - y1 + 1) | |
order = scores.argsort()[::-1] | |
keep = [] | |
while order.size > 0: | |
i = order[0] | |
keep.append(i) | |
xx1 = np.maximum(x1[i], x1[order[1:]]) | |
yy1 = np.maximum(y1[i], y1[order[1:]]) | |
xx2 = np.minimum(x2[i], x2[order[1:]]) | |
yy2 = np.minimum(y2[i], y2[order[1:]]) | |
w = np.maximum(0.0, xx2 - xx1 + 1) | |
h = np.maximum(0.0, yy2 - yy1 + 1) | |
inter = w * h | |
ovr = inter / (areas[i] + areas[order[1:]] - inter) | |
inds = np.where(ovr <= thresh)[0] | |
order = order[inds + 1] | |
return keep | |
def get_retinaface(name, download=False, root='~/.insightface/models', **kwargs): | |
if not download: | |
assert os.path.exists(name) | |
return RetinaFace(name) | |
else: | |
from .model_store import get_model_file | |
_file = get_model_file("retinaface_%s" % name, root=root) | |
return retinaface(_file) | |