Spaces:
Sleeping
Sleeping
#!/usr/bin/env python3 | |
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Server with simple python model performing adding and subtract operation.""" | |
import logging | |
import cupy as cp # pytype: disable=import-error | |
import numpy as np | |
from pytriton.decorators import batch | |
from pytriton.model_config import ModelConfig, Tensor | |
from pytriton.triton import Triton | |
LOGGER = logging.getLogger("examples.linear_cupy.server") | |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(name)s: %(message)s") | |
VECTOR_SIZE = 10 | |
class LinearModel: | |
def __init__(self): | |
self.alpha = 2 | |
self.beta = cp.arange(VECTOR_SIZE) | |
def linear(self, **inputs): | |
u_batch, v_batch = inputs.values() | |
u_batch_cp, v_batch_cp = cp.asarray(u_batch), cp.asarray(v_batch) | |
lin = u_batch_cp * self.alpha + v_batch_cp + self.beta | |
return {"result": cp.asnumpy(lin)} | |
with Triton() as triton: | |
LOGGER.info("Loading linear model") | |
lin_model = LinearModel() | |
triton.bind( | |
model_name="Linear", | |
infer_func=lin_model.linear, | |
inputs=[ | |
Tensor(dtype=np.float64, shape=(VECTOR_SIZE,)), | |
Tensor(dtype=np.float64, shape=(VECTOR_SIZE,)), | |
], | |
outputs=[ | |
Tensor(name="result", dtype=np.float64, shape=(-1,)), | |
], | |
config=ModelConfig(max_batch_size=128), | |
strict=True, | |
) | |
LOGGER.info("Serving model") | |
triton.serve() | |