Spaces:
Sleeping
Sleeping
import pathlib | |
import subprocess | |
import tempfile | |
import av | |
import numpy as np | |
from PIL import Image | |
def alpha_crop_detect(path): | |
result = subprocess.check_output( | |
[ | |
"bash", | |
"-c", | |
f"""ffmpeg -c:v libvpx -i {path} -filter_complex "[0:v]alphaextract, cropdetect=limit=0:round=16:reset=0" -f null - 2>&1 | grep -oP 'crop=\K\d+:\d+:\d+:\d+' """, | |
] | |
) | |
return result.decode().strip().split("\n")[-1] | |
def crop_resize_overlay( | |
path, background_path, range, out, left=0.5, top=0.15, height=0.85, crf=17 | |
): | |
with av.open(path, "r") as f: | |
fps = f.streams.video[0].base_rate | |
with av.open(background_path, "r") as f: | |
background_width, background_height = ( | |
f.streams.video[0].width, | |
f.streams.video[0].height, | |
) | |
if isinstance(top, float): | |
top = int(background_height * top) | |
if isinstance(height, float): | |
height = int(background_height * height) | |
height -= height % 2 | |
w, h, _, _ = map(int, range.split(":")) | |
width = int(height / h * w) | |
width -= width % 2 | |
if isinstance(left, float): | |
left = int(background_width * left) - width // 2 | |
subprocess.call( | |
[ | |
"bash", | |
"-c", | |
f"""ffmpeg -y -c:v libvpx -r {fps} -i {path} -r {fps} -i {background_path} -filter_complex "[0:v]crop={range},scale={width}:{height} [vidi]; [1:v][vidi] overlay={left}:{top}" -crf {crf} -pix_fmt yuva420p -c:v libvpx-vp9 -c:a copy {out}""", | |
] | |
) | |
return background_width, background_height, int(fps), (left, top, height) | |
import json | |
import os | |
import shutil | |
import tempfile | |
from pathlib import Path | |
import av | |
import pandas as pd | |
import stf_alternative | |
from stf_alternative.util import get_crop_mp4_dir, get_frame_dir, get_preprocess_dir | |
from stf_tools.silent import create_silent_video | |
from stf_tools.writers import WebmWriter | |
def create_template( | |
template_video_path, | |
background_path, | |
out_path, | |
config_path, | |
reference_face, | |
work_root_path, | |
checkpoint_path, | |
left, | |
top, | |
height, | |
crf=17, | |
): | |
crop_range = alpha_crop_detect(template_video_path) | |
result_width, result_height, fps, (left, top, height) = crop_resize_overlay( | |
template_video_path, | |
background_path, | |
crop_range, | |
out_path, | |
left=left, | |
top=top, | |
height=height, | |
crf=crf, | |
) | |
stf_alternative.preprocess_template( | |
config_path=config_path, | |
template_video_path=template_video_path, | |
reference_face=reference_face, | |
work_root_path=work_root_path, | |
template_frame_ratio=1.0, | |
template_video_ratio=[1.0], | |
silent_video_path=None, | |
callback=None, | |
device="cuda:0", | |
verbose=True, | |
save_frames=False, | |
) | |
model = stf_alternative.create_model( | |
config_path=config_path, | |
checkpoint_path=checkpoint_path, | |
work_root_path=work_root_path, | |
device="cuda:0", | |
verbose=True, | |
wavlm_path="microsoft/wavlm-large", | |
) | |
preprocess_dir = Path(get_preprocess_dir(work_root_path, model.args.name)) | |
crop_mp4_dir = Path(get_crop_mp4_dir(preprocess_dir, template_video_path)) | |
dataset_dir = crop_mp4_dir / f"{Path(template_video_path).stem}_000" | |
template_frames_path = Path( | |
get_frame_dir(preprocess_dir, template_video_path, ratio=1.0) | |
) | |
with open(preprocess_dir / "metadata.json", "w") as f: | |
json.dump( | |
{ | |
"fps": fps, | |
"width": result_width, | |
"height": result_height, | |
}, | |
f, | |
) | |
df = pd.read_pickle(dataset_dir / "df_fan.pickle") | |
w, h, x, y = map(int, crop_range.split(":")) | |
scale = height / h | |
id_set = set() | |
for it in df["cropped_box"]: | |
if id(it) in id_set: | |
continue | |
id_set.add(id(it)) | |
x1, y1, x2, y2 = it | |
x1 = (x1 - x) * scale + left | |
x2 = (x2 - x) * scale + left | |
y1 = (y1 - y) * scale + top | |
y2 = (y2 - y) * scale + top | |
it[:] = (x1, y1, x2, y2) | |
df.to_pickle(dataset_dir / "df_fan.pickle") | |
template_frames_path.mkdir(exist_ok=True, parents=True) | |
with av.open(out_path) as container: | |
for frame in container.decode(video=0): | |
Image.fromarray(frame.to_ndarray(format="rgb24"), mode="RGB").save( | |
f"{template_frames_path}/%05d.webp" % frame.index, | |
format="webp", | |
lossless=True, | |
) | |
with tempfile.TemporaryDirectory() as tempdir: | |
silent_video_path = f"{tempdir}/silent.webm" | |
template = stf_alternative.Template( | |
config_path=config_path, | |
model=model, | |
template_video_path=template_video_path, | |
wav_std=False, | |
ref_wav=None, | |
verbose=True, | |
) | |
writer = WebmWriter( | |
silent_video_path, | |
width=result_width, | |
height=result_height, | |
fps=fps, | |
crf=crf, | |
audio_sample_rate=16000, | |
quiet=False, | |
) | |
create_silent_video(template, writer) | |
silent_frames_path = Path( | |
get_frame_dir(preprocess_dir, silent_video_path, ratio=1.0) | |
) | |
silent_frames_path.mkdir(exist_ok=True, parents=True) | |
with av.open(silent_video_path) as container: | |
for frame in container.decode(video=0): | |
Image.fromarray(frame.to_ndarray(format="rgb24"), mode="RGB").save( | |
f"{silent_frames_path}/%05d.webp" % frame.index, | |
format="webp", | |
lossless=True, | |
) | |
shutil.rmtree(template_frames_path, ignore_errors=False) | |
silent_frames_path.rename(template_frames_path) | |