import torch
import os
from concurrent.futures import ThreadPoolExecutor
from pydub import AudioSegment
import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False)
from pathlib import Path
import subprocess
from pathlib import Path
import av
import imageio
import numpy as np
from rich.progress import track
from tqdm import tqdm

import stf_alternative



def exec_cmd(cmd):
    subprocess.run(
        cmd, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT
    )


def images2video(images, wfp, **kwargs):
    fps = kwargs.get("fps", 24)
    video_format = kwargs.get("format", "mp4")  # default is mp4 format
    codec = kwargs.get("codec", "libx264")  # default is libx264 encoding
    quality = kwargs.get("quality")  # video quality
    pixelformat = kwargs.get("pixelformat", "yuv420p")  # video pixel format
    image_mode = kwargs.get("image_mode", "rgb")
    macro_block_size = kwargs.get("macro_block_size", 2)
    ffmpeg_params = ["-crf", str(kwargs.get("crf", 18))]

    writer = imageio.get_writer(
        wfp,
        fps=fps,
        format=video_format,
        codec=codec,
        quality=quality,
        ffmpeg_params=ffmpeg_params,
        pixelformat=pixelformat,
        macro_block_size=macro_block_size,
    )

    n = len(images)
    for i in track(range(n), description="writing", transient=True):
        if image_mode.lower() == "bgr":
            writer.append_data(images[i][..., ::-1])
        else:
            writer.append_data(images[i])

    writer.close()

    # print(f':smiley: Dump to {wfp}\n', style="bold green")
    print(f"Dump to {wfp}\n")


def merge_audio_video(video_fp, audio_fp, wfp):
    if osp.exists(video_fp) and osp.exists(audio_fp):
        cmd = f"ffmpeg -i {video_fp} -i {audio_fp} -c:v copy -c:a aac {wfp} -y"
        exec_cmd(cmd)
        print(f"merge {video_fp} and {audio_fp} to {wfp}")
    else:
        print(f"video_fp: {video_fp} or audio_fp: {audio_fp} not exists!")




class STFPipeline:
    def __init__(self,
                 stf_path: str = "/home/user/app/stf/",
                 device: str = "cuda:0",
                 template_video_path: str = "templates/front_one_piece_dress_nodded_cut.webm",
                 config_path: str = "front_config.json",
                 checkpoint_path: str = "089.pth",
                 #root_path: str = "works"
                 root_path: str = "/tmp/works"
                 
    ):
        #os.makedirs(root_path, exist_ok=True)
        import shutil; shutil.copytree('/home/user/app/stf/works', '/tmp/works', dirs_exist_ok=True)
        dir_zip='/tmp/works/preprocess/nasilhong_f_v1_front/crop_video_front_one_piece_dress_nodded_cut.zip'
        dir_target='/tmp/works/preprocess/nasilhong_f_v1_front/'
        import zipfile; zipfile.ZipFile(dir_zip, 'r').extractall(dir_target)

        self.config_path = os.path.join(stf_path, config_path)
        self.checkpoint_path = os.path.join(stf_path, checkpoint_path)
        #self.work_root_path = os.path.join(stf_path, root_path)
        self.work_root_path = os.path.join(root_path)
        self.device = device
        self.template_video_path=os.path.join(stf_path, template_video_path)
        
        # model = stf_alternative.create_model(
        # config_path=config_path,
        # checkpoint_path=checkpoint_path,
        # work_root_path=work_root_path,
        # device=device,
        # wavlm_path="microsoft/wavlm-large",
        # )
        # self.template = stf_alternative.Template(
        # model=model,
        # config_path=config_path,
        # template_video_path=template_video_path,
        # )

        print('STFPipeline init')
    

    def execute(self, audio: str):

        print('STFPipeline execute')
        
        model = stf_alternative.create_model(
            config_path=self.config_path,
            checkpoint_path=self.checkpoint_path,
            work_root_path=self.work_root_path,
            device=self.device,
            wavlm_path="microsoft/wavlm-large",
        )

        print('STFPipeline execute 1')
        self.template = stf_alternative.Template(
            model=model,
            config_path=self.config_path,
            template_video_path=self.template_video_path,
        )

        print('STFPipeline execute 2')
        
        # Path("dubbing").mkdir(exist_ok=True)
        # save_path = os.path.join("dubbing", Path(audio).stem+"--lip.mp4")
        Path("/tmp/dubbing").mkdir(exist_ok=True)
        save_path = os.path.join("/tmp/dubbing", Path(audio).stem+"--lip.mp4")
        
        reader = iter(self.template._get_reader(num_skip_frames=0))

        print('execute,reader====', reader)
        audio_segment = AudioSegment.from_file(audio)
        pivot = 0
        results = []

        # try:

        #     gen_infer = self.template.gen_infer(
        #         audio_segment,
        #         pivot,
        #     )
        #     for idx, (it, chunk) in enumerate(gen_infer, pivot):
        #         frame = next(reader)
        #         composed = self.template.compose(idx, frame, it)
        #         frame_name = f"{idx}".zfill(5)+".jpg"
        #         results.append(it['pred'])
        #     pivot = idx + 1
        # except StopIteration as e:
        #     pass

        
        with ThreadPoolExecutor(1) as p:
            try:

                gen_infer = self.template.gen_infer_concurrent(
                    p,
                    audio_segment,
                    pivot,
                )
                for idx, (it, chunk) in enumerate(gen_infer, pivot):
                    frame = next(reader)
                    print('frame=', frame.shape, frame[:10])
                    composed = self.template.compose(idx, frame, it)
                    frame_name = f"{idx}".zfill(5)+".jpg"
                    results.append(it['pred'])
                pivot = idx + 1
            except StopIteration as e:
                pass

        print('STFPipeline execute 3')
        images2video(results, save_path)
                                
        return save_path