#!/usr/bin/env python3 # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example with multiple models served on single Triton server.""" import logging import numpy as np from pytriton.decorators import batch from pytriton.model_config import ModelConfig, Tensor from pytriton.triton import Triton logger = logging.getLogger("examples.multiple_models_python.server") logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(name)s: %(message)s") @batch def _multiply2(multiplicand): product = multiplicand * 2.0 return [product] @batch def _multiply4(multiplicand): product = multiplicand * 4.0 return [product] with Triton() as triton: logger.info("Loading Multiply2 model") triton.bind( model_name="Multiply2", infer_func=_multiply2, inputs=[ Tensor(name="multiplicand", dtype=np.float32, shape=(-1,)), ], outputs=[ Tensor(name="product", dtype=np.float32, shape=(-1,)), ], config=ModelConfig(max_batch_size=8), strict=True, ) logger.info("Loading Multiply4 model") triton.bind( model_name="Multiply4", infer_func=_multiply4, inputs=[ Tensor(name="multiplicand", dtype=np.float32, shape=(-1,)), ], outputs=[ Tensor(name="product", dtype=np.float32, shape=(-1,)), ], config=ModelConfig(max_batch_size=8), strict=True, ) triton.serve()