#!/usr/bin/env python3 # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Very simple example with python identity operation.""" import logging import numpy as np from pytriton.decorators import batch from pytriton.model_config import ModelConfig, Tensor from pytriton.triton import Triton logger = logging.getLogger("examples.identity_python.server") logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(name)s: %(message)s") def _infer_raw_fn(inputs): # noqa: N803 return [ { "OUTPUT_1": request["INPUT_1"], "OUTPUT_2": request["INPUT_2"], } for request in inputs ] @batch def _infer_fn(**inputs): # noqa: N803 return { "OUTPUT_1": inputs["INPUT_1"], "OUTPUT_2": inputs["INPUT_2"], } with Triton() as triton: logger.info("Loading Identity model.") triton.bind( model_name="Identity", infer_func=_infer_fn, inputs=[ Tensor(dtype=np.float64, shape=(-1,)), Tensor(dtype=object, shape=(1,)), ], outputs=[ Tensor(dtype=np.float64, shape=(-1,)), Tensor(dtype=object, shape=(1,)), ], config=ModelConfig(max_batch_size=128), strict=True, ) logger.info("Serving inference") triton.serve()