#!/usr/bin/env python3 # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Simple classifier example based on Hugging Face JAX BERT model.""" import logging import numpy as np from transformers import BertTokenizer, FlaxBertModel # pytype: disable=import-error from pytriton.decorators import batch from pytriton.model_config import ModelConfig, Tensor from pytriton.triton import Triton logger = logging.getLogger("examples.huggingface_bert_jax.server") logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(name)s: %(message)s") tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") model = FlaxBertModel.from_pretrained("bert-base-uncased") @batch def _infer_fn(**inputs: np.ndarray): (sequence_batch,) = inputs.values() # need to convert dtype=object to bytes first # end decode unicode bytes sequence_batch = np.char.decode(sequence_batch.astype("bytes"), "utf-8") last_hidden_states = [] for sequence_item in sequence_batch: tokenized_sequence = tokenizer(sequence_item.item(), return_tensors="jax") results = model(**tokenized_sequence) last_hidden_states.append(results.last_hidden_state) last_hidden_states = np.array(last_hidden_states, dtype=np.float32) return [last_hidden_states] with Triton() as triton: logger.info("Loading BERT model.") triton.bind( model_name="BERT", infer_func=_infer_fn, inputs=[ Tensor(name="sequence", dtype=np.bytes_, shape=(1,)), ], outputs=[ Tensor( name="last_hidden_state", dtype=np.float32, shape=(-1, -1, -1), ), ], config=ModelConfig(max_batch_size=16), strict=True, ) logger.info("Serving inference") triton.serve()