#!/usr/bin/env python3 # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Server for Stable Diffusion 1.5.""" import argparse import base64 import io import logging import numpy as np import torch # pytype: disable=import-error from diffusers import StableDiffusionPipeline # pytype: disable=import-error from pytriton.decorators import batch, first_value, group_by_values from pytriton.model_config import DynamicBatcher, ModelConfig, Tensor from pytriton.triton import Triton, TritonConfig LOGGER = logging.getLogger("examples.huggingface_stable_diffusion.server") DEVICE = "cuda" if torch.cuda.is_available() else "cpu" IMAGE_FORMAT = "JPEG" pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) pipe = pipe.to(DEVICE) def _encode_image_to_base64(image): raw_bytes = io.BytesIO() image.save(raw_bytes, IMAGE_FORMAT) raw_bytes.seek(0) # return to the start of the buffer return base64.b64encode(raw_bytes.read()) @batch @group_by_values("img_size") @first_value("img_size") def _infer_fn( prompt: np.ndarray, img_size: np.int64, ): prompts = [np.char.decode(p.astype("bytes"), "utf-8").item() for p in prompt] LOGGER.debug(f"Prompts: {prompts}") LOGGER.debug(f"Image Size: {img_size}x{img_size}") outputs = [] for idx, image in enumerate( pipe( prompt=prompts, height=img_size, width=img_size, ).images ): raw_data = _encode_image_to_base64(image) outputs.append([raw_data]) LOGGER.debug(f"Generated result for prompt `{prompts[idx]}` with size {len(raw_data)}") LOGGER.debug(f"Prepared batch response of size: {len(outputs)}") return {"image": np.array(outputs)} def _parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "--verbose", "-v", action="store_true", help="Enable verbose logging in debug mode.", ) return parser.parse_args() def main(): """Initialize server with model.""" args = _parse_args() log_level = logging.DEBUG if args.verbose else logging.INFO logging.basicConfig(level=log_level, format="%(asctime)s - %(levelname)s - %(name)s: %(message)s") log_verbose = 1 if args.verbose else 0 config = TritonConfig(exit_on_error=True, log_verbose=log_verbose) with Triton(config=config) as triton: LOGGER.info("Loading the pipeline") triton.bind( model_name="StableDiffusion_1_5", infer_func=_infer_fn, inputs=[ Tensor(name="prompt", dtype=np.bytes_, shape=(1,)), Tensor(name="img_size", dtype=np.int64, shape=(1,)), ], outputs=[ Tensor(name="image", dtype=np.bytes_, shape=(1,)), ], config=ModelConfig( max_batch_size=4, batcher=DynamicBatcher( max_queue_delay_microseconds=100, ), ), strict=True, ) triton.serve() if __name__ == "__main__": main()