#!/usr/bin/env python3 # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Simple classifier example based on Hugging Face Pytorch BART model.""" import logging import numpy as np from transformers import pipeline # pytype: disable=import-error from pytriton.decorators import batch from pytriton.model_config import ModelConfig, Tensor from pytriton.triton import Triton logger = logging.getLogger("examples.perf_analyzer.server") logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(name)s: %(message)s") classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli", device=0) @batch def _infer_fn(**inputs: np.ndarray): sequences_batch, labels_batch = inputs.values() # need to convert dtype=object to bytes first # end decode unicode bytes sequences_batch = np.char.decode(sequences_batch.astype("bytes"), "utf-8") labels_batch = np.char.decode(labels_batch.astype("bytes"), "utf-8") scores = [] for sequence, labels in zip(sequences_batch, labels_batch): classification_result = classifier(sequence.item(), labels.tolist()) scores.append(classification_result["scores"]) scores_batch = np.array(scores, dtype=np.float32) return {"scores": scores_batch} with Triton() as triton: logger.info("Loading BART model.") triton.bind( model_name="BART", infer_func=_infer_fn, inputs=[ Tensor(name="sequence", dtype=np.bytes_, shape=(1,)), Tensor(name="labels", dtype=np.bytes_, shape=(-1,)), ], outputs=[ Tensor(name="scores", dtype=np.float32, shape=(-1,)), ], config=ModelConfig(max_batch_size=8), strict=True, ) logger.info("Serving inference") triton.serve()