# coding: utf-8

"""
Pipeline for gradio
"""
import gradio as gr
from .config.argument_config import ArgumentConfig
from .live_portrait_pipeline import LivePortraitPipeline
from .utils.io import load_img_online
from .utils.rprint import rlog as log
from .utils.crop import prepare_paste_back, paste_back
from .utils.camera import get_rotation_matrix
from .utils.retargeting_utils import calc_eye_close_ratio, calc_lip_close_ratio

def update_args(args, user_args):
    """update the args according to user inputs
    """
    for k, v in user_args.items():
        if hasattr(args, k):
            setattr(args, k, v)
    return args

class GradioPipeline(LivePortraitPipeline):

    def __init__(self, inference_cfg, crop_cfg, args: ArgumentConfig):
        super().__init__(inference_cfg, crop_cfg)
        # self.live_portrait_wrapper = self.live_portrait_wrapper
        self.args = args
        # for single image retargeting
        self.start_prepare = False
        self.f_s_user = None
        self.x_c_s_info_user = None
        self.x_s_user = None
        self.source_lmk_user = None
        self.mask_ori = None
        self.img_rgb = None
        self.crop_M_c2o = None


    def execute_video(
        self,
        input_image_path,
        input_video_path,
        flag_relative_input,
        flag_do_crop_input,
        flag_remap_input,
        ):
        """ for video driven potrait animation
        """
        if input_image_path is not None and input_video_path is not None:
            args_user = {
                'source_image': input_image_path,
                'driving_info': input_video_path,
                'flag_relative': flag_relative_input,
                'flag_do_crop': flag_do_crop_input,
                'flag_pasteback': flag_remap_input,
            }
            # update config from user input
            self.args = update_args(self.args, args_user)
            self.live_portrait_wrapper.update_config(self.args.__dict__)
            self.cropper.update_config(self.args.__dict__)
            # video driven animation
            video_path, video_path_concat = self.execute(self.args)
            gr.Info("Run successfully!", duration=2)
            return video_path, video_path_concat,
        else:
            raise gr.Error("The input source portrait or driving video hasn't been prepared yet 💥!", duration=5)

    def execute_image(self, input_eye_ratio: float, input_lip_ratio: float):
        """ for single image retargeting
        """
        if input_eye_ratio is None or input_eye_ratio is None:
            raise gr.Error("Invalid ratio input 💥!", duration=5)
        elif self.f_s_user is None:
            if self.start_prepare:
                raise gr.Error(
                    "The source portrait is under processing 💥! Please wait for a second.",
                    duration=5
                )
            else:
                raise gr.Error(
                    "The source portrait hasn't been prepared yet 💥! Please scroll to the top of the page to upload.",
                    duration=5
                )
        else:
            # ∆_eyes,i = R_eyes(x_s; c_s,eyes, c_d,eyes,i)
            combined_eye_ratio_tensor = self.live_portrait_wrapper.calc_combined_eye_ratio([[input_eye_ratio]], self.source_lmk_user)
            eyes_delta = self.live_portrait_wrapper.retarget_eye(self.x_s_user, combined_eye_ratio_tensor)
            # ∆_lip,i = R_lip(x_s; c_s,lip, c_d,lip,i)
            combined_lip_ratio_tensor = self.live_portrait_wrapper.calc_combined_lip_ratio([[input_lip_ratio]], self.source_lmk_user)
            lip_delta = self.live_portrait_wrapper.retarget_lip(self.x_s_user, combined_lip_ratio_tensor)
            num_kp = self.x_s_user.shape[1]
            # default: use x_s
            x_d_new = self.x_s_user + eyes_delta.reshape(-1, num_kp, 3) + lip_delta.reshape(-1, num_kp, 3)
            # D(W(f_s; x_s, x′_d))
            out = self.live_portrait_wrapper.warp_decode(self.f_s_user, self.x_s_user, x_d_new)
            out = self.live_portrait_wrapper.parse_output(out['out'])[0]
            out_to_ori_blend = paste_back(out, self.crop_M_c2o, self.img_rgb, self.mask_ori)
            gr.Info("Run successfully!", duration=2)
            return out, out_to_ori_blend


    def prepare_retargeting(self, input_image_path, flag_do_crop = True):
        """ for single image retargeting
        """
        if input_image_path is not None:
            gr.Info("Upload successfully!", duration=2)
            self.start_prepare = True
            inference_cfg = self.live_portrait_wrapper.cfg
            ######## process source portrait ########
            img_rgb = load_img_online(input_image_path, mode='rgb', max_dim=1280, n=16)
            log(f"Load source image from {input_image_path}.")
            crop_info = self.cropper.crop_single_image(img_rgb)
            if flag_do_crop:
                I_s = self.live_portrait_wrapper.prepare_source(crop_info['img_crop_256x256'])
            else:
                I_s = self.live_portrait_wrapper.prepare_source(img_rgb)
            x_s_info = self.live_portrait_wrapper.get_kp_info(I_s)
            R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
            ############################################

            # record global info for next time use
            self.f_s_user = self.live_portrait_wrapper.extract_feature_3d(I_s)
            self.x_s_user = self.live_portrait_wrapper.transform_keypoint(x_s_info)
            self.x_s_info_user = x_s_info
            self.source_lmk_user = crop_info['lmk_crop']
            self.img_rgb = img_rgb
            self.crop_M_c2o = crop_info['M_c2o']
            self.mask_ori = prepare_paste_back(inference_cfg.mask_crop, crop_info['M_c2o'], dsize=(img_rgb.shape[1], img_rgb.shape[0]))
            # update slider
            eye_close_ratio = calc_eye_close_ratio(self.source_lmk_user[None])
            eye_close_ratio = float(eye_close_ratio.squeeze(0).mean())
            lip_close_ratio = calc_lip_close_ratio(self.source_lmk_user[None])
            lip_close_ratio = float(lip_close_ratio.squeeze(0).mean())
            # for vis
            self.I_s_vis = self.live_portrait_wrapper.parse_output(I_s)[0]
            return eye_close_ratio, lip_close_ratio, self.I_s_vis
        else:
            # when press the clear button, go here
            return 0.8, 0.8, self.I_s_vis