import asyncio import math from collections import deque from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor from glob import glob from pathlib import Path import av import numpy as np from PIL import Image from torch.utils.data import Dataset, default_collate def get_default_video_reader( data_path, ): with av.open(str(data_path)) as container: for frame in container.decode(video=0): yield frame.to_ndarray( format="rgb" if data_path.suffix == ".mp4" else "rgba" ) accepted_format = set([".webp", ".png", ".jpg"]) def read_image(path): return np.array(Image.open(path).convert("RGBA")) class ImageDataset(Dataset): def __init__(self, path, num_skip_frames=0): paths = sorted( [it for it in glob(f"{path}/*") if Path(it).suffix in accepted_format] ) self.paths = paths[num_skip_frames:] + paths[:num_skip_frames] def __getitem__(self, idx): return read_image(self.paths[idx]) def __len__(self): return len(self.paths) class ProcessPoolIterator: def __init__(self, dataset, preload=8, num_workers=2): self.pool = ProcessPoolExecutor(num_workers) self.dataset = dataset self.queue = deque() self.preload = preload def __iter__(self): for i in range(min(self.preload, len(self.dataset))): self.queue.append(self.pool.submit(self.dataset.__getitem__, i)) for i in range(self.preload, len(self.dataset)): self.queue.append(self.pool.submit(self.dataset.__getitem__, i)) yield self.queue.popleft().result() while len(self.queue): yield self.queue.popleft().result() def __len__(self): return len(self.dataset) class ProcessPoolBatchIterator: def __init__(self, dataset, batch_size, num_workers=4, drop_last=False): self.iterator = ProcessPoolIterator( dataset=dataset, preload=batch_size, num_workers=num_workers ) self.batch_size = batch_size self.drop_last = drop_last def __iter__(self): iterator = iter(self.iterator) while True: ret = [] try: for i in range(self.batch_size): ret.append(next(iterator)) yield default_collate(ret) except StopIteration as e: if not self.drop_last and ret: yield default_collate(ret) break def __len__(self): return ( math.floor(len(self.iterator) / self.batch_size) if self.drop_last else math.ceil(len(self.iterator) / self.batch_size) ) class AsyncProcessPoolIterator: def __init__(self, dataset, preload=8, num_workers=4): self.pool = ProcessPoolExecutor(num_workers) self.dataset = dataset self.queue = deque() self.preload = preload async def __aiter__(self): loop = asyncio.get_running_loop() for i in range(min(self.preload, len(self.dataset))): self.queue.append( loop.run_in_executor(self.pool, self.dataset.__getitem__, i) ) for i in range(self.preload, len(self.dataset)): self.queue.append( loop.run_in_executor(self.pool, self.dataset.__getitem__, i) ) yield await self.queue.popleft() while len(self.queue): yield await self.queue.popleft() def __len__(self): return len(self.dataset) class AsyncProcessPoolBatchIterator: def __init__(self, dataset, batch_size, num_workers=4, drop_last=False): self.iterator = AsyncProcessPoolIterator( dataset=dataset, preload=batch_size, num_workers=num_workers ) self.batch_size = batch_size self.drop_last = drop_last async def __aiter__(self): iterator = aiter(self.iterator) while True: ret = [] try: for _ in range(self.batch_size): ret.append(await anext(iterator)) yield default_collate(ret) except StopAsyncIteration as e: if not self.drop_last and ret: yield default_collate(ret) break def __len__(self): return ( math.floor(len(self.iterator) / self.batch_size) if self.drop_last else math.ceil(len(self.iterator) / self.batch_size) ) def get_image_folder_process_reader( data_path, num_skip_frames=0, num_workers=4, preload=16, ): dataset = ImageDataset(path=data_path, num_skip_frames=num_skip_frames) dataloader = ProcessPoolIterator( dataset=dataset, num_workers=num_workers, preload=preload, ) return dataloader def get_image_folder_async_process_reader( data_path, num_skip_frames=0, num_workers=4, preload=16, ): dataset = ImageDataset(path=data_path, num_skip_frames=num_skip_frames) dataloader = AsyncProcessPoolIterator( dataset=dataset, num_workers=num_workers, preload=preload, ) return dataloader