Add app
Browse files- .gitignore +4 -0
- README.md +32 -6
- app.py +211 -0
- babel.png +0 -0
- generator.py +124 -0
- requirements.txt +13 -0
- style.css +42 -0
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
venv
|
2 |
+
.idea
|
3 |
+
__pycache__
|
4 |
+
*~
|
README.md
CHANGED
@@ -1,13 +1,39 @@
|
|
1 |
---
|
2 |
-
title: Babel
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
-
sdk_version: 1.10.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
license: postgresql
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Babel - translate between Dutch and English
|
3 |
+
emoji: π§
|
4 |
+
colorFrom: gray
|
5 |
+
colorTo: indigo
|
6 |
sdk: streamlit
|
|
|
7 |
app_file: app.py
|
8 |
pinned: false
|
9 |
+
sdk_version: 1.0.0
|
10 |
license: postgresql
|
11 |
---
|
12 |
|
13 |
+
# Configuration
|
14 |
+
|
15 |
+
`title`: _string_
|
16 |
+
Display title for the Space
|
17 |
+
|
18 |
+
`emoji`: _string_
|
19 |
+
Space emoji (emoji-only character allowed)
|
20 |
+
|
21 |
+
`colorFrom`: _string_
|
22 |
+
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
|
23 |
+
|
24 |
+
`colorTo`: _string_
|
25 |
+
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
|
26 |
+
|
27 |
+
`sdk`: _string_
|
28 |
+
Can be either `gradio`, `streamlit`, or `static`
|
29 |
+
|
30 |
+
`sdk_version` : _string_
|
31 |
+
Only applicable for `streamlit` SDK.
|
32 |
+
See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions.
|
33 |
+
|
34 |
+
`app_file`: _string_
|
35 |
+
Path to your main application file (which contains either `gradio` or `streamlit` Python code, or `static` html code).
|
36 |
+
Path is relative to the root of the repository.
|
37 |
+
|
38 |
+
`pinned`: _boolean_
|
39 |
+
Whether the Space stays on top of your list.
|
app.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
from random import randint
|
5 |
+
|
6 |
+
import psutil
|
7 |
+
import streamlit as st
|
8 |
+
import torch
|
9 |
+
from transformers import (
|
10 |
+
AutoModelForCausalLM,
|
11 |
+
AutoModelForSeq2SeqLM,
|
12 |
+
AutoTokenizer,
|
13 |
+
pipeline,
|
14 |
+
set_seed,
|
15 |
+
)
|
16 |
+
|
17 |
+
from generator import GeneratorFactory
|
18 |
+
|
19 |
+
device = torch.cuda.device_count() - 1
|
20 |
+
|
21 |
+
TRANSLATION_NL_TO_EN = "translation_en_to_nl"
|
22 |
+
|
23 |
+
GENERATOR_LIST = [
|
24 |
+
{
|
25 |
+
"model_name": "yhavinga/longt5-local-eff-large-nl8-voc8k-ddwn-512beta-512l-nedd-256ccmatrix-en-nl",
|
26 |
+
"desc": "longT5 large nl8 256cc/512beta/512l en->nl",
|
27 |
+
"task": TRANSLATION_NL_TO_EN,
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"model_name": "yhavinga/longt5-local-eff-large-nl8-voc8k-ddwn-512beta-512-nedd-en-nl",
|
31 |
+
"desc": "longT5 large nl8 512beta/512l en->nl",
|
32 |
+
"task": TRANSLATION_NL_TO_EN,
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"model_name": "yhavinga/t5-small-24L-ccmatrix-multi",
|
36 |
+
"desc": "T5 small nl24 ccmatrix en->nl",
|
37 |
+
"task": TRANSLATION_NL_TO_EN,
|
38 |
+
},
|
39 |
+
]
|
40 |
+
|
41 |
+
|
42 |
+
def main():
|
43 |
+
st.set_page_config( # Alternate names: setup_page, page, layout
|
44 |
+
page_title="Babel", # String or None. Strings get appended with "β’ Streamlit".
|
45 |
+
layout="wide", # Can be "centered" or "wide". In the future also "dashboard", etc.
|
46 |
+
initial_sidebar_state="expanded", # Can be "auto", "expanded", "collapsed"
|
47 |
+
page_icon="π", # String, anything supported by st.image, or None.
|
48 |
+
)
|
49 |
+
|
50 |
+
if "generators" not in st.session_state:
|
51 |
+
st.session_state["generators"] = GeneratorFactory(GENERATOR_LIST)
|
52 |
+
|
53 |
+
generators = st.session_state["generators"]
|
54 |
+
|
55 |
+
with open("style.css") as f:
|
56 |
+
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
|
57 |
+
|
58 |
+
st.sidebar.image("babel.png", width=200)
|
59 |
+
st.sidebar.markdown(
|
60 |
+
"""# Babel
|
61 |
+
Vertaal van en naar Engels"""
|
62 |
+
)
|
63 |
+
model_desc = st.sidebar.selectbox("Model", generators.gpt_descs(), index=1)
|
64 |
+
st.sidebar.title("Parameters:")
|
65 |
+
if "prompt_box" not in st.session_state:
|
66 |
+
# Text is from https://www.gutenberg.org/files/35091/35091-h/35091-h.html
|
67 |
+
st.session_state[
|
68 |
+
"prompt_box"
|
69 |
+
] = """It was a wet, gusty night and I had a lonely walk home. By taking the river road, though I hated it, I saved two miles, so I sloshed ahead trying not to think at all. Through the barbed wire fence I could see the racing river. Its black swollen body writhed along with extraordinary swiftness, breathlessly silent, only occasionally making a swishing ripple. I did not enjoy looking at it. I was somehow afraid.
|
70 |
+
|
71 |
+
And there, at the end of the river road where I swerved off, a figure stood waiting for me, motionless and enigmatic. I had to meet it or turn back.
|
72 |
+
|
73 |
+
It was a quite young girl, unknown to me, with a hood over her head, and with large unhappy eyes.
|
74 |
+
|
75 |
+
βMy father is very ill,β she said without a word of introduction. βThe nurse is frightened. Could you come in and help?β"""
|
76 |
+
st.session_state["text"] = st.text_area(
|
77 |
+
"Enter text", st.session_state.prompt_box, height=300
|
78 |
+
)
|
79 |
+
max_length = st.sidebar.number_input(
|
80 |
+
"Lengte van de tekst",
|
81 |
+
value=200,
|
82 |
+
max_value=4096,
|
83 |
+
)
|
84 |
+
no_repeat_ngram_size = st.sidebar.number_input(
|
85 |
+
"No-repeat NGram size", min_value=1, max_value=5, value=3
|
86 |
+
)
|
87 |
+
repetition_penalty = st.sidebar.number_input(
|
88 |
+
"Repetition penalty", min_value=0.0, max_value=5.0, value=1.2, step=0.1
|
89 |
+
)
|
90 |
+
num_return_sequences = st.sidebar.number_input(
|
91 |
+
"Num return sequences", min_value=1, max_value=5, value=1
|
92 |
+
)
|
93 |
+
seed_placeholder = st.sidebar.empty()
|
94 |
+
if "seed" not in st.session_state:
|
95 |
+
print(f"Session state does not contain seed")
|
96 |
+
st.session_state["seed"] = 4162549114
|
97 |
+
print(f"Seed is set to: {st.session_state['seed']}")
|
98 |
+
|
99 |
+
seed = seed_placeholder.number_input(
|
100 |
+
"Seed", min_value=0, max_value=2**32 - 1, value=st.session_state["seed"]
|
101 |
+
)
|
102 |
+
|
103 |
+
def set_random_seed():
|
104 |
+
st.session_state["seed"] = randint(0, 2**32 - 1)
|
105 |
+
seed = seed_placeholder.number_input(
|
106 |
+
"Seed", min_value=0, max_value=2**32 - 1, value=st.session_state["seed"]
|
107 |
+
)
|
108 |
+
print(f"New random seed set to: {seed}")
|
109 |
+
|
110 |
+
if st.button("Set new random seed"):
|
111 |
+
set_random_seed()
|
112 |
+
|
113 |
+
if sampling_mode := st.sidebar.selectbox(
|
114 |
+
"select a Mode", index=0, options=["Top-k Sampling", "Beam Search"]
|
115 |
+
):
|
116 |
+
if sampling_mode == "Beam Search":
|
117 |
+
num_beams = st.sidebar.number_input(
|
118 |
+
"Num beams", min_value=1, max_value=10, value=4
|
119 |
+
)
|
120 |
+
length_penalty = st.sidebar.number_input(
|
121 |
+
"Length penalty", min_value=0.0, max_value=2.0, value=1.0, step=0.1
|
122 |
+
)
|
123 |
+
params = {
|
124 |
+
"max_length": max_length,
|
125 |
+
"no_repeat_ngram_size": no_repeat_ngram_size,
|
126 |
+
"repetition_penalty": repetition_penalty,
|
127 |
+
"num_return_sequences": num_return_sequences,
|
128 |
+
"num_beams": num_beams,
|
129 |
+
"early_stopping": True,
|
130 |
+
"length_penalty": length_penalty,
|
131 |
+
}
|
132 |
+
else:
|
133 |
+
top_k = st.sidebar.number_input(
|
134 |
+
"Top K", min_value=0, max_value=100, value=50
|
135 |
+
)
|
136 |
+
top_p = st.sidebar.number_input(
|
137 |
+
"Top P", min_value=0.0, max_value=1.0, value=0.95, step=0.05
|
138 |
+
)
|
139 |
+
temperature = st.sidebar.number_input(
|
140 |
+
"Temperature", min_value=0.05, max_value=1.0, value=1.0, step=0.05
|
141 |
+
)
|
142 |
+
params = {
|
143 |
+
"max_length": max_length,
|
144 |
+
"no_repeat_ngram_size": no_repeat_ngram_size,
|
145 |
+
"repetition_penalty": repetition_penalty,
|
146 |
+
"num_return_sequences": num_return_sequences,
|
147 |
+
"do_sample": True,
|
148 |
+
"top_k": top_k,
|
149 |
+
"top_p": top_p,
|
150 |
+
"temperature": temperature,
|
151 |
+
}
|
152 |
+
|
153 |
+
st.sidebar.markdown(
|
154 |
+
"""For an explanation of the parameters, head over to the [Huggingface blog post about text generation](https://huggingface.co/blog/how-to-generate)
|
155 |
+
and the [Huggingface text generation interface doc](https://huggingface.co/transformers/main_classes/model.html?highlight=generate#transformers.generation_utils.GenerationMixin.generate).
|
156 |
+
"""
|
157 |
+
)
|
158 |
+
|
159 |
+
def estimate_time():
|
160 |
+
"""Estimate the time it takes to generate the text."""
|
161 |
+
estimate = max_length / 18
|
162 |
+
if device == -1:
|
163 |
+
## cpu
|
164 |
+
estimate = estimate * (1 + 0.7 * (num_return_sequences - 1))
|
165 |
+
if sampling_mode == "Beam Search":
|
166 |
+
estimate = estimate * (1.1 + 0.3 * (num_beams - 1))
|
167 |
+
else:
|
168 |
+
## gpu
|
169 |
+
estimate = estimate * (1 + 0.1 * (num_return_sequences - 1))
|
170 |
+
estimate = 0.5 + estimate / 5
|
171 |
+
if sampling_mode == "Beam Search":
|
172 |
+
estimate = estimate * (1.0 + 0.1 * (num_beams - 1))
|
173 |
+
return int(estimate)
|
174 |
+
|
175 |
+
if st.button("Run"):
|
176 |
+
estimate = estimate_time()
|
177 |
+
|
178 |
+
with st.spinner(
|
179 |
+
text=f"Please wait ~ {estimate} second{'s' if estimate != 1 else ''} while getting results ..."
|
180 |
+
):
|
181 |
+
memory = psutil.virtual_memory()
|
182 |
+
|
183 |
+
for generator in generators:
|
184 |
+
st.subheader(f"Result from {generator}")
|
185 |
+
set_seed(seed)
|
186 |
+
time_start = time.time()
|
187 |
+
result = generator.generate(text=st.session_state.text, **params)
|
188 |
+
time_end = time.time()
|
189 |
+
time_diff = time_end - time_start
|
190 |
+
|
191 |
+
for text in result:
|
192 |
+
st.write(text.replace("\n", " \n"))
|
193 |
+
st.write(f"--- generated in {time_diff:.2f} seconds ---")
|
194 |
+
|
195 |
+
info = f"""
|
196 |
+
---
|
197 |
+
*Memory: {memory.total / 10**9:.2f}GB, used: {memory.percent}%, available: {memory.available / 10**9:.2f}GB*
|
198 |
+
*Text generated using seed {seed}*
|
199 |
+
"""
|
200 |
+
st.write(info)
|
201 |
+
|
202 |
+
params["seed"] = seed
|
203 |
+
params["prompt"] = st.session_state.text
|
204 |
+
params["model"] = generator.model_name
|
205 |
+
params_text = json.dumps(params)
|
206 |
+
print(params_text)
|
207 |
+
st.json(params_text)
|
208 |
+
|
209 |
+
|
210 |
+
if __name__ == "__main__":
|
211 |
+
main()
|
babel.png
ADDED
generator.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
import torch
|
4 |
+
from transformers import (
|
5 |
+
AutoModelForCausalLM,
|
6 |
+
AutoModelForSeq2SeqLM,
|
7 |
+
AutoTokenizer,
|
8 |
+
)
|
9 |
+
|
10 |
+
device = torch.cuda.device_count() - 1
|
11 |
+
|
12 |
+
TRANSLATION_NL_TO_EN = "translation_en_to_nl"
|
13 |
+
|
14 |
+
|
15 |
+
@st.cache(suppress_st_warning=True, allow_output_mutation=True)
|
16 |
+
def load_model(model_name, task):
|
17 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
18 |
+
try:
|
19 |
+
if not os.path.exists(".streamlit/secrets.toml"):
|
20 |
+
raise FileNotFoundError
|
21 |
+
access_token = st.secrets.get("netherator")
|
22 |
+
except FileNotFoundError:
|
23 |
+
access_token = os.environ.get("HF_ACCESS_TOKEN", None)
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
25 |
+
model_name, from_flax=True, use_auth_token=access_token
|
26 |
+
)
|
27 |
+
if tokenizer.pad_token is None:
|
28 |
+
print("Adding pad_token to the tokenizer")
|
29 |
+
tokenizer.pad_token = tokenizer.eos_token
|
30 |
+
auto_model_class = (
|
31 |
+
AutoModelForSeq2SeqLM if "translation" in task else AutoModelForCausalLM
|
32 |
+
)
|
33 |
+
model = auto_model_class.from_pretrained(
|
34 |
+
model_name, from_flax=True, use_auth_token=access_token
|
35 |
+
)
|
36 |
+
if device != -1:
|
37 |
+
model.to(f"cuda:{device}")
|
38 |
+
return tokenizer, model
|
39 |
+
|
40 |
+
|
41 |
+
class Generator:
|
42 |
+
def __init__(self, model_name, task, desc):
|
43 |
+
self.model_name = model_name
|
44 |
+
self.task = task
|
45 |
+
self.desc = desc
|
46 |
+
self.tokenizer = None
|
47 |
+
self.model = None
|
48 |
+
self.prefix = ""
|
49 |
+
self.load()
|
50 |
+
|
51 |
+
def load(self):
|
52 |
+
if not self.model:
|
53 |
+
print(f"Loading model {self.model_name}")
|
54 |
+
self.tokenizer, self.model = load_model(self.model_name, self.task)
|
55 |
+
|
56 |
+
try:
|
57 |
+
if self.task in self.model.config.task_specific_params:
|
58 |
+
task_specific_params = self.model.config.task_specific_params[
|
59 |
+
self.task
|
60 |
+
]
|
61 |
+
if "prefix" in task_specific_params:
|
62 |
+
self.prefix = task_specific_params["prefix"]
|
63 |
+
except TypeError:
|
64 |
+
pass
|
65 |
+
|
66 |
+
def generate(self, text: str, **generate_kwargs) -> str:
|
67 |
+
#
|
68 |
+
# import pydevd_pycharm
|
69 |
+
# pydevd_pycharm.settrace('10.1.0.144', port=12345, stdoutToServer=True, stderrToServer=True)
|
70 |
+
#
|
71 |
+
batch_encoded = self.tokenizer(
|
72 |
+
self.prefix + text,
|
73 |
+
max_length=generate_kwargs["max_length"],
|
74 |
+
padding=False,
|
75 |
+
truncation=False,
|
76 |
+
return_tensors="pt",
|
77 |
+
)
|
78 |
+
if device != -1:
|
79 |
+
batch_encoded.to(f"cuda:{device}")
|
80 |
+
logits = self.model.generate(
|
81 |
+
batch_encoded["input_ids"],
|
82 |
+
attention_mask=batch_encoded["attention_mask"],
|
83 |
+
**generate_kwargs,
|
84 |
+
)
|
85 |
+
decoded_preds = self.tokenizer.batch_decode(
|
86 |
+
logits.cpu().numpy(), skip_special_tokens=False
|
87 |
+
)
|
88 |
+
decoded_preds = [
|
89 |
+
pred.replace("<pad> ", "").replace("<pad>", "").replace("</s>", "")
|
90 |
+
for pred in decoded_preds
|
91 |
+
]
|
92 |
+
return decoded_preds
|
93 |
+
|
94 |
+
# return self.pipeline(text, **generate_kwargs)
|
95 |
+
|
96 |
+
def __str__(self):
|
97 |
+
return self.desc
|
98 |
+
|
99 |
+
|
100 |
+
class GeneratorFactory:
|
101 |
+
def __init__(self, generator_list):
|
102 |
+
self.generators = []
|
103 |
+
for g in generator_list:
|
104 |
+
with st.spinner(text=f"Loading the model {g['desc']} ..."):
|
105 |
+
self.add_generator(**g)
|
106 |
+
|
107 |
+
def add_generator(self, model_name, task, desc):
|
108 |
+
# If the generator is not yet present, add it
|
109 |
+
if not self.get_generator(model_name=model_name, task=task, desc=desc):
|
110 |
+
g = Generator(model_name, task, desc)
|
111 |
+
g.load()
|
112 |
+
self.generators.append(g)
|
113 |
+
|
114 |
+
def get_generator(self, **kwargs):
|
115 |
+
for g in self.generators:
|
116 |
+
if all([g.__dict__.get(k) == v for k, v in kwargs.items()]):
|
117 |
+
return g
|
118 |
+
return None
|
119 |
+
|
120 |
+
def __iter__(self):
|
121 |
+
return iter(self.generators)
|
122 |
+
|
123 |
+
def gpt_descs(self):
|
124 |
+
return [g.desc for g in self.generators if g.task == TRANSLATION_NL_TO_EN]
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#-f https://download.pytorch.org/whl/torch_stable.html
|
2 |
+
-f https://download.pytorch.org/whl/cu116
|
3 |
+
-f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
|
4 |
+
protobuf<3.20
|
5 |
+
streamlit>=1.4.0,<=1.10.0
|
6 |
+
torch
|
7 |
+
transformers>=4.13.0
|
8 |
+
mtranslate
|
9 |
+
psutil
|
10 |
+
jax[cuda]==0.3.16
|
11 |
+
chex>=0.1.4
|
12 |
+
##jaxlib==0.1.67
|
13 |
+
flax>=0.5.3
|
style.css
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
body {
|
2 |
+
background-color: #eee;
|
3 |
+
}
|
4 |
+
/*.fullScreenFrame > div {*/
|
5 |
+
/* display: flex;*/
|
6 |
+
/* justify-content: center;*/
|
7 |
+
/*}*/
|
8 |
+
/*.stButton>button {*/
|
9 |
+
/* color: #4F8BF9;*/
|
10 |
+
/* border-radius: 50%;*/
|
11 |
+
/* height: 3em;*/
|
12 |
+
/* width: 3em;*/
|
13 |
+
/*}*/
|
14 |
+
|
15 |
+
.stTextInput>div>div>input {
|
16 |
+
color: #4F8BF9;
|
17 |
+
}
|
18 |
+
.stTextArea>div>div>input {
|
19 |
+
color: #4F8BF9;
|
20 |
+
min-height: 300px;
|
21 |
+
}
|
22 |
+
|
23 |
+
|
24 |
+
/*.st-cj {*/
|
25 |
+
/* min-height: 500px;*/
|
26 |
+
/* spellcheck="false";*/
|
27 |
+
/* color: #4F8BF9;*/
|
28 |
+
/*}*/
|
29 |
+
/*.st-ch {*/
|
30 |
+
/* min-height: 500px;*/
|
31 |
+
/* spellcheck="false";*/
|
32 |
+
/* color: #4F8BF9;*/
|
33 |
+
/*}*/
|
34 |
+
/*.st-bb {*/
|
35 |
+
/* min-height: 500px;*/
|
36 |
+
/* spellcheck="false";*/
|
37 |
+
/* color: #4F8BF9;*/
|
38 |
+
/*}*/
|
39 |
+
|
40 |
+
/*body {*/
|
41 |
+
/* background-color: #f1fbff*/
|
42 |
+
/*}*/
|