Spaces:
Paused
Paused
Kunpeng Song
commited on
Commit
•
ef3a17c
1
Parent(s):
338f71e
bg
Browse files- app.py +5 -6
- app_version1.py +52 -0
- dataset_lib/dataset_eval_MoMA.py +7 -4
- example_images/newImages/3_mask.jpg +0 -0
- model_lib/modules.py +2 -2
app.py
CHANGED
@@ -15,14 +15,14 @@ title = "MoMA"
|
|
15 |
description = "This model has to run on GPU"
|
16 |
article = "<p style='text-align: center'><a href='https://news.machinelearning.sg/posts/beautiful_profile_pics_remove_background_image_with_deeplabv3/'>Blog</a> | <a href='https://github.com/eugenesiow/practical-ml'>Github Repo</a></p>"
|
17 |
|
18 |
-
def MoMA_demo(rgb,
|
19 |
# move the input and model to GPU for speed if available
|
20 |
with torch.no_grad():
|
21 |
-
generated_image = model.generate_images(rgb,
|
22 |
return generated_image
|
23 |
|
24 |
-
def inference(rgb,
|
25 |
-
result = MoMA_demo(rgb,
|
26 |
return result
|
27 |
|
28 |
seed_everything(0)
|
@@ -40,13 +40,12 @@ model = MoMA_main_modal(args).to(args.device, dtype=torch.float16)
|
|
40 |
gr.Interface(
|
41 |
inference,
|
42 |
[gr.Image(type="pil", label="Input RGB"),
|
43 |
-
gr.Image(type="pil", label="Input Mask"),
|
44 |
gr.Textbox(lines=1, label="subject"),
|
45 |
gr.Textbox(lines=5, label="Prompt")],
|
46 |
gr.Image(type="pil", label="Output"),
|
47 |
title=title,
|
48 |
description=description,
|
49 |
article=article,
|
50 |
-
examples=[["example_images/newImages/3.jpg",'
|
51 |
# enable_queue=True
|
52 |
).launch(debug=False)
|
|
|
15 |
description = "This model has to run on GPU"
|
16 |
article = "<p style='text-align: center'><a href='https://news.machinelearning.sg/posts/beautiful_profile_pics_remove_background_image_with_deeplabv3/'>Blog</a> | <a href='https://github.com/eugenesiow/practical-ml'>Github Repo</a></p>"
|
17 |
|
18 |
+
def MoMA_demo(rgb, subject, prompt):
|
19 |
# move the input and model to GPU for speed if available
|
20 |
with torch.no_grad():
|
21 |
+
generated_image = model.generate_images(rgb, subject, prompt, strength=1.0, seed=2)
|
22 |
return generated_image
|
23 |
|
24 |
+
def inference(rgb, subject, prompt):
|
25 |
+
result = MoMA_demo(rgb, subject, prompt)
|
26 |
return result
|
27 |
|
28 |
seed_everything(0)
|
|
|
40 |
gr.Interface(
|
41 |
inference,
|
42 |
[gr.Image(type="pil", label="Input RGB"),
|
|
|
43 |
gr.Textbox(lines=1, label="subject"),
|
44 |
gr.Textbox(lines=5, label="Prompt")],
|
45 |
gr.Image(type="pil", label="Output"),
|
46 |
title=title,
|
47 |
description=description,
|
48 |
article=article,
|
49 |
+
examples=[["example_images/newImages/3.jpg",'car','A car in autumn with falling leaves.']],
|
50 |
# enable_queue=True
|
51 |
).launch(debug=False)
|
app_version1.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from torchvision import transforms
|
6 |
+
import torch
|
7 |
+
from pytorch_lightning import seed_everything
|
8 |
+
from torchvision.utils import save_image
|
9 |
+
from model_lib.modules import MoMA_main_modal
|
10 |
+
from model_lib.utils import parse_args
|
11 |
+
import os
|
12 |
+
os.environ["CUDA_VISIBLE_DEVICES"]="0"
|
13 |
+
|
14 |
+
title = "MoMA"
|
15 |
+
description = "This model has to run on GPU"
|
16 |
+
article = "<p style='text-align: center'><a href='https://news.machinelearning.sg/posts/beautiful_profile_pics_remove_background_image_with_deeplabv3/'>Blog</a> | <a href='https://github.com/eugenesiow/practical-ml'>Github Repo</a></p>"
|
17 |
+
|
18 |
+
def MoMA_demo(rgb, mask, subject, prompt):
|
19 |
+
# move the input and model to GPU for speed if available
|
20 |
+
with torch.no_grad():
|
21 |
+
generated_image = model.generate_images(rgb, mask, subject, prompt, strength=1.0, seed=2)
|
22 |
+
return generated_image
|
23 |
+
|
24 |
+
def inference(rgb, mask, subject, prompt):
|
25 |
+
result = MoMA_demo(rgb, mask, subject, prompt)
|
26 |
+
return result
|
27 |
+
|
28 |
+
seed_everything(0)
|
29 |
+
args = parse_args()
|
30 |
+
#load MoMA from HuggingFace. Auto download
|
31 |
+
model = MoMA_main_modal(args).to(args.device, dtype=torch.float16)
|
32 |
+
|
33 |
+
|
34 |
+
################ change texture ##################
|
35 |
+
# prompt = "A wooden sculpture of a car on the table."
|
36 |
+
# generated_image = model.generate_images(rgb_path, mask_path, subject, prompt, strength=0.4, seed=4, return_mask=True) # set strength to 0.4 for better prompt fidelity
|
37 |
+
# save_image(generated_image,f"{args.output_path}/{subject}_{prompt}.jpg")
|
38 |
+
|
39 |
+
|
40 |
+
gr.Interface(
|
41 |
+
inference,
|
42 |
+
[gr.Image(type="pil", label="Input RGB"),
|
43 |
+
gr.Image(type="pil", label="Input Mask"),
|
44 |
+
gr.Textbox(lines=1, label="subject"),
|
45 |
+
gr.Textbox(lines=5, label="Prompt")],
|
46 |
+
gr.Image(type="pil", label="Output"),
|
47 |
+
title=title,
|
48 |
+
description=description,
|
49 |
+
article=article,
|
50 |
+
examples=[["example_images/newImages/3.jpg",'example_images/newImages/3_mask.jpg','car','A car in autumn with falling leaves.']],
|
51 |
+
# enable_queue=True
|
52 |
+
).launch(debug=False)
|
dataset_lib/dataset_eval_MoMA.py
CHANGED
@@ -3,9 +3,14 @@ import numpy as np
|
|
3 |
import torch
|
4 |
from torchvision import transforms
|
5 |
from llava.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
|
|
|
6 |
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
def Dataset_evaluate_MoMA(
|
9 |
|
10 |
LLaVa_processor = moMA_main_modal.image_processor_llava
|
11 |
llava_config = moMA_main_modal.model_llava.config
|
@@ -14,9 +19,7 @@ def Dataset_evaluate_MoMA(rgb_path, prompt,subject, mask_path, moMA_main_modal):
|
|
14 |
transforms.Resize((512, 512)),
|
15 |
])
|
16 |
|
17 |
-
|
18 |
-
image_pil = rgb_path # Image.open(rgb_path)
|
19 |
-
mask_pil = mask_path # Image.open(mask_path)
|
20 |
blip2_opt = prompt
|
21 |
|
22 |
if transform is not None:
|
|
|
3 |
import torch
|
4 |
from torchvision import transforms
|
5 |
from llava.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
|
6 |
+
from rembg import remove
|
7 |
|
8 |
+
def create_binary_mask(image):
|
9 |
+
grayscale = image.convert("L")
|
10 |
+
mask = grayscale.point(lambda x: 255 if x > 1 else 0, '1')
|
11 |
+
return mask
|
12 |
|
13 |
+
def Dataset_evaluate_MoMA(image_pil, prompt,subject, moMA_main_modal):
|
14 |
|
15 |
LLaVa_processor = moMA_main_modal.image_processor_llava
|
16 |
llava_config = moMA_main_modal.model_llava.config
|
|
|
19 |
transforms.Resize((512, 512)),
|
20 |
])
|
21 |
|
22 |
+
mask_pil = create_binary_mask(remove(image_pil)) # Image.open(mask_path)
|
|
|
|
|
23 |
blip2_opt = prompt
|
24 |
|
25 |
if transform is not None:
|
example_images/newImages/3_mask.jpg
DELETED
Binary file (7.31 kB)
|
|
model_lib/modules.py
CHANGED
@@ -136,8 +136,8 @@ class MoMA_main_modal(nn.Module):
|
|
136 |
def reset(self):
|
137 |
self.moMA_generator.reset_all()
|
138 |
|
139 |
-
def generate_images(self, rgb_path,
|
140 |
-
batch = Dataset_evaluate_MoMA(rgb_path, prompt, subject,
|
141 |
self.moMA_generator.set_selfAttn_strength(strength)
|
142 |
|
143 |
with torch.cuda.amp.autocast(enabled=True, dtype=torch.float16, cache_enabled=True):
|
|
|
136 |
def reset(self):
|
137 |
self.moMA_generator.reset_all()
|
138 |
|
139 |
+
def generate_images(self, rgb_path, subject, prompt, strength=1.0, num=1, seed=0):
|
140 |
+
batch = Dataset_evaluate_MoMA(rgb_path, prompt, subject,self)
|
141 |
self.moMA_generator.set_selfAttn_strength(strength)
|
142 |
|
143 |
with torch.cuda.amp.autocast(enabled=True, dtype=torch.float16, cache_enabled=True):
|