ylacombe's picture
Update app.py
52cf258 verified
from queue import Queue
from threading import Thread
from typing import Optional
import numpy as np
import torch
from transformers import MusicgenMelodyForConditionalGeneration, AutoProcessor, set_seed
from transformers.generation.streamers import BaseStreamer
import gradio as gr
import io, wave
import spaces
from transformers import MusicgenMelodyForConditionalGeneration, MusicgenForConditionalGeneration, AutoProcessor, set_seed
from transformers.modeling_outputs import BaseModelOutput
from transformers.utils import logging
from transformers.generation.configuration_utils import GenerationConfig
from transformers.generation.logits_process import ClassifierFreeGuidanceLogitsProcessor, LogitsProcessorList
from transformers.generation.stopping_criteria import StoppingCriteriaList
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union
import copy
import torch
import torchaudio
from demucs import pretrained
from demucs.apply import apply_model
from demucs.audio import convert_audio
logger = logging.get_logger(__name__)
class MusicgenMelodyForLongFormConditionalGeneration(MusicgenMelodyForConditionalGeneration):
stride_longform = 750
def _prepare_audio_encoder_kwargs_for_longform_generation(
self, audio_codes, model_kwargs,):
frames, bsz, codebooks, seq_len = audio_codes.shape
if frames != 1:
raise ValueError(
f"Expected 1 frame in the audio code outputs, got {frames} frames. Ensure chunking is "
"disabled by setting `chunk_length=None` in the audio encoder."
)
decoder_input_ids = audio_codes[0, ...].reshape(bsz * self.decoder.num_codebooks, seq_len)
model_kwargs["decoder_input_ids"] = decoder_input_ids
return model_kwargs
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
generation_config: Optional[GenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
synced_gpus: Optional[bool] = None,
max_longform_generation_length: Optional[int] = 4000,
streamer: Optional["BaseStreamer"] = None,
**kwargs,
):
"""
Generates sequences of token ids for models with a language modeling head.
<Tip warning={true}>
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
model's default generation configuration. You can override any `generation_config` by passing the corresponding
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
For an overview of generation strategies and code examples, check out the [following
guide](./generation_strategies).
</Tip>
Parameters:
inputs (`torch.Tensor` of varying shape depending on the modality, *optional*):
The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
should be in the format `input_ids`. For encoder-decoder models *inputs* can represent any of
`input_ids`, `input_values`, `input_features`, or `pixel_values`.
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which had the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
logits_processor (`LogitsProcessorList`, *optional*):
Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
stopping_criteria (`StoppingCriteriaList`, *optional*):
Custom stopping criteria that complement the default stopping criteria built from arguments and a
generation config. If a stopping criteria is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
synced_gpus (`bool`, *optional*, defaults to `False`):
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
streamer (`BaseStreamer`, *optional*):
Streamer object that will be used to stream the generated sequences. Generated tokens are passed
through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
Return:
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`.
If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateDecoderOnlyOutput`],
- [`~generation.GenerateBeamDecoderOnlyOutput`]
If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateEncoderDecoderOutput`],
- [`~generation.GenerateBeamEncoderDecoderOutput`]
"""
# 1. Handle `generation_config` and kwargs that might update it, and validate the resulting objects
if generation_config is None:
generation_config = self.generation_config
generation_config = copy.deepcopy(generation_config)
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
generation_config.validate()
self._validate_model_kwargs(model_kwargs.copy())
# 2. Set generation parameters if not already defined
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
if generation_config.pad_token_id is None and generation_config.eos_token_id is not None:
if model_kwargs.get("attention_mask", None) is None:
logger.warning(
"The attention mask and the pad token id were not set. As a consequence, you may observe "
"unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
)
eos_token_id = generation_config.eos_token_id
if isinstance(eos_token_id, list):
eos_token_id = eos_token_id[0]
logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.")
generation_config.pad_token_id = eos_token_id
# 3. Define model inputs
# inputs_tensor has to be defined
# model_input_name is defined if model-specific keyword input is passed
# otherwise model_input_name is None
# all model-specific keyword inputs are removed from `model_kwargs`
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
inputs, generation_config.bos_token_id, model_kwargs
)
batch_size = inputs_tensor.shape[0]
# 4. Define other model kwargs
model_kwargs["output_attentions"] = generation_config.output_attentions
model_kwargs["output_hidden_states"] = generation_config.output_hidden_states
model_kwargs["use_cache"] = generation_config.use_cache
model_kwargs["guidance_scale"] = generation_config.guidance_scale
if model_kwargs.get("attention_mask", None) is None:
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id
)
if "encoder_hidden_states" not in model_kwargs:
# encoder_hidden_states are created and added to `model_kwargs`
model_kwargs = self._prepare_encoder_hidden_states_kwargs_for_generation(
inputs_tensor,
model_kwargs,
model_input_name,
guidance_scale=generation_config.guidance_scale,
)
# 5. Prepare `input_ids` which will be used for auto-regressive generation
input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
batch_size=batch_size,
model_input_name=model_input_name,
model_kwargs=model_kwargs,
decoder_start_token_id=generation_config.decoder_start_token_id,
bos_token_id=generation_config.bos_token_id,
device=inputs_tensor.device,
)
# 6. Prepare `max_length` depending on other stopping criteria.
input_ids_seq_length = input_ids.shape[-1]
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
if has_default_max_length and generation_config.max_new_tokens is None:
logger.warning(
f"Using the model-agnostic default `max_length` (={generation_config.max_length}) "
"to control the generation length. We recommend setting `max_new_tokens` to control the maximum length of the generation."
)
elif generation_config.max_new_tokens is not None:
if not has_default_max_length:
logger.warning(
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
"Please refer to the documentation for more information. "
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
)
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length:
raise ValueError(
f"Unfeasible length constraints: the minimum length ({generation_config.min_length}) is larger than"
f" the maximum length ({generation_config.max_length})"
)
if input_ids_seq_length >= generation_config.max_length:
logger.warning(
f"Input length of decoder_input_ids is {input_ids_seq_length}, but `max_length` is set to"
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
" increasing `max_new_tokens`."
)
# build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to Musicgen Melody)
input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask(
input_ids,
pad_token_id=generation_config.decoder_start_token_id,
max_length=generation_config.max_length,
)
# stash the delay mask so that we don't have to recompute in each forward pass
model_kwargs["decoder_delay_pattern_mask"] = decoder_delay_pattern_mask
# input_ids are ready to be placed on the streamer (if used)
if streamer is not None:
streamer.put(input_ids.cpu())
# 7. determine generation mode
is_greedy_gen_mode = (
(generation_config.num_beams == 1)
and (generation_config.num_beam_groups == 1)
and generation_config.do_sample is False
)
is_sample_gen_mode = (
(generation_config.num_beams == 1)
and (generation_config.num_beam_groups == 1)
and generation_config.do_sample is True
)
# 8. prepare batched CFG externally (to enable coexistance with the unbatched CFG)
if generation_config.guidance_scale is not None and generation_config.guidance_scale > 1:
logits_processor.append(ClassifierFreeGuidanceLogitsProcessor(generation_config.guidance_scale))
generation_config.guidance_scale = None
# 9. prepare distribution pre_processing samplers
logits_processor = self._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_seq_length,
encoder_input_ids=inputs_tensor,
prefix_allowed_tokens_fn=None,
logits_processor=logits_processor,
)
# 10. prepare stopping criteria
stopping_criteria = self._get_stopping_criteria(
generation_config=generation_config, stopping_criteria=stopping_criteria
)
# ENTER LONGFORM GENERATION LOOP
generated_tokens = []
# the first timestamps corresponds to decoder_start_token
current_generated_length = input_ids.shape[1] - 1
max_new_tokens = generation_config.max_new_tokens
while current_generated_length + 4 <= max_longform_generation_length:
generation_config.max_new_tokens = min(max_new_tokens, max_longform_generation_length - current_generated_length)
if is_greedy_gen_mode:
if generation_config.num_return_sequences > 1:
raise ValueError(
"num_return_sequences has to be 1 when doing greedy search, "
f"but is {generation_config.num_return_sequences}."
)
# 11. run greedy search
outputs = self._greedy_search(
input_ids,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
streamer=streamer,
**model_kwargs,
)
elif is_sample_gen_mode:
# 11. prepare logits warper
logits_warper = self._get_logits_warper(generation_config)
# expand input_ids with `num_return_sequences` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_return_sequences,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 12. run sample
outputs = self._sample(
input_ids,
logits_processor=logits_processor,
logits_warper=logits_warper,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
streamer=streamer,
**model_kwargs,
)
else:
raise ValueError(
"Got incompatible mode for generation, should be one of greedy or sampling. "
"Ensure that beam search is de-activated by setting `num_beams=1` and `num_beam_groups=1`."
)
if generation_config.return_dict_in_generate:
output_ids = outputs.sequences
else:
output_ids = outputs
# apply the pattern mask to the final ids
output_ids = self.decoder.apply_delay_pattern_mask(output_ids, model_kwargs["decoder_delay_pattern_mask"])
# revert the pattern delay mask by filtering the pad token id
output_ids = output_ids[output_ids != generation_config.pad_token_id].reshape(
batch_size, self.decoder.num_codebooks, -1
)
if len(generated_tokens) >= 1:
generated_tokens.append(output_ids[:, :, self.stride_longform:])
else:
generated_tokens.append(output_ids)
current_generated_length += generated_tokens[-1].shape[-1]
# append the frame dimension back to the audio codes
# use last generated tokens as begining of the newest generation
output_ids = output_ids[None, :, :, - self.stride_longform:]
model_kwargs = self._prepare_audio_encoder_kwargs_for_longform_generation(output_ids, model_kwargs)
# Prepare new `input_ids` which will be used for auto-regressive generation
input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
batch_size=batch_size,
model_input_name="input_ids",
model_kwargs=model_kwargs,
decoder_start_token_id=self.generation_config.decoder_start_token_id,
bos_token_id=self.generation_config.bos_token_id,
device=input_ids.device,
)
# build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to Musicgen Melody)
input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask(
input_ids,
pad_token_id=generation_config.decoder_start_token_id,
max_length=generation_config.max_length,
)
# stash the delay mask so that we don't have to recompute in each forward pass
model_kwargs["decoder_delay_pattern_mask"] = decoder_delay_pattern_mask
# TODO(YL): periodic prompt song
# encoder_hidden_states are created and added to `model_kwargs`
# model_kwargs = self._prepare_encoder_hidden_states_kwargs_for_generation(
# inputs_tensor,
# model_kwargs,
# model_input_name,
# guidance_scale=generation_config.guidance_scale,
# )
# append the frame dimension back to the audio codes
output_ids = torch.cat(generated_tokens, dim=-1)[None, ...]
# Specific to this gradio demo
if streamer is not None:
streamer.end(final_end=True)
audio_scales = model_kwargs.get("audio_scales")
if audio_scales is None:
audio_scales = [None] * batch_size
if self.decoder.config.audio_channels == 1:
output_values = self.audio_encoder.decode(
output_ids,
audio_scales=audio_scales,
).audio_values
else:
codec_outputs_left = self.audio_encoder.decode(output_ids[:, :, ::2, :], audio_scales=audio_scales)
output_values_left = codec_outputs_left.audio_values
codec_outputs_right = self.audio_encoder.decode(output_ids[:, :, 1::2, :], audio_scales=audio_scales)
output_values_right = codec_outputs_right.audio_values
output_values = torch.cat([output_values_left, output_values_right], dim=1)
if generation_config.return_dict_in_generate:
outputs.sequences = output_values
return outputs
else:
return output_values
model = MusicgenMelodyForLongFormConditionalGeneration.from_pretrained("facebook/musicgen-melody", revision="refs/pr/14")#, attn_implementation="sdpa")
processor = AutoProcessor.from_pretrained("facebook/musicgen-melody", revision="refs/pr/14")
demucs = pretrained.get_model('htdemucs')
title = "Streaming Long-form MusicGen"
description = """
Stream the outputs of the MusicGen Melody text-to-music model by playing the generated audio as soon as the first chunk is ready.
The generation loop is adapted to perform **long-form** music generation. In this demo, we limit the duration of the music generated to 1mn20, but in theory, it could run **endlessly**.
Demo uses [MusicGen Melody](https://huggingface.co/facebook/musicgen-melody) in the 🤗 Transformers library. Note that the
demo works best on the Chrome browser. If there is no audio output, try switching browser to Chrome.
"""
article = """
## FAQ
### How Does It Work?
MusicGen is an auto-regressive transformer-based model, meaning generates audio codes (tokens) in a causal fashion.
At each decoding step, the model generates a new set of audio codes, conditional on the text input and all previous audio codes. From the
frame rate of the [EnCodec model](https://huggingface.co/facebook/encodec_32khz) used to decode the generated codes to audio waveform,
each set of generated audio codes corresponds to 0.02 seconds. This means we require a total of 1000 decoding steps to generate
20 seconds of audio.
Rather than waiting for the entire audio sequence to be generated, which would require the full 1000 decoding steps, we can start
playing the audio after a specified number of decoding steps have been reached, a techinque known as [*streaming*](https://huggingface.co/docs/transformers/main/en/generation_strategies#streaming).
For example, after 250 steps we have the first 5 seconds of audio ready, and so can play this without waiting for the remaining
750 decoding steps to be complete. As we continue to generate with the MusicGen model, we append new chunks of generated audio
to our output waveform on-the-fly. After the full 1000 decoding steps, the generated audio is complete, and is composed of four
chunks of audio, each corresponding to 250 tokens.
This method of playing incremental generations **reduces the latency** of the MusicGen model from the total time to generate 1000 tokens,
to the time taken to play the first chunk of audio (250 tokens). This can result in **significant improvements** to perceived latency,
particularly when the chunk size is chosen to be small.
In practice, the chunk size should be tuned to your device: using a smaller chunk size will mean that the first chunk is ready faster, but should not be chosen so small that the model generates slower
than the time it takes to play the audio.
For details on how the streaming class works, check out the source code for the [MusicgenStreamer](https://huggingface.co/spaces/sanchit-gandhi/musicgen-streaming/blob/main/app.py#L52).
### Could this be used for stereo music generation?
In theory, yes, but you would have to adapt the current demo a bit and use a checkpoint specificaly made for stereo generation, for example, this [one](https://huggingface.co/facebook/musicgen-stereo-melody).
### Why is there a delay between the moment the first chunk is generated and the moment the audio starts playing?
This behaviour is specific to gradio and the different components it uses. If you ever adapt this demo for a streaming use-case, you could have lower latency.
"""
class MusicgenStreamer(BaseStreamer):
def __init__(
self,
model: MusicgenMelodyForConditionalGeneration,
device: Optional[str] = None,
play_steps: Optional[int] = 10,
stride: Optional[int] = None,
timeout: Optional[float] = None,
is_longform: Optional[bool] = False,
longform_stride: Optional[float] = 10,
):
"""
Streamer that stores playback-ready audio in a queue, to be used by a downstream application as an iterator. This is
useful for applications that benefit from accessing the generated audio in a non-blocking way (e.g. in an interactive
Gradio demo).
Parameters:
model (`MusicgenForConditionalGeneration`):
The MusicGen model used to generate the audio waveform.
device (`str`, *optional*):
The torch device on which to run the computation. If `None`, will default to the device of the model.
play_steps (`int`, *optional*, defaults to 10):
The number of generation steps with which to return the generated audio array. Using fewer steps will
mean the first chunk is ready faster, but will require more codec decoding steps overall. This value
should be tuned to your device and latency requirements.
stride (`int`, *optional*):
The window (stride) between adjacent audio samples. Using a stride between adjacent audio samples reduces
the hard boundary between them, giving smoother playback. If `None`, will default to a value equivalent to
play_steps // 6 in the audio space.
timeout (`int`, *optional*):
The timeout for the audio queue. If `None`, the queue will block indefinitely. Useful to handle exceptions
in `.generate()`, when it is called in a separate thread.
is_longform (`bool`, *optional*, defaults to `False`):
If `is_longform`, will takes into account long form stride and non regular ending signal.
"""
self.decoder = model.decoder
self.audio_encoder = model.audio_encoder
self.generation_config = model.generation_config
self.device = device if device is not None else model.device
self.longform_stride = longform_stride
# variables used in the streaming process
self.play_steps = play_steps
if stride is not None:
self.stride = stride
else:
hop_length = np.prod(self.audio_encoder.config.upsampling_ratios)
self.stride = hop_length * (play_steps - self.decoder.num_codebooks) // 6
self.token_cache = None
self.to_yield = 0
self.is_longform = is_longform
self.previous_len = -1
# varibles used in the thread process
self.audio_queue = Queue()
self.stop_signal = None
self.timeout = timeout
def apply_delay_pattern_mask(self, input_ids):
# build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to MusicGen)
_, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask(
input_ids[:, :1],
pad_token_id=self.generation_config.decoder_start_token_id,
max_length=input_ids.shape[-1],
)
# apply the pattern mask to the input ids
input_ids = self.decoder.apply_delay_pattern_mask(input_ids, decoder_delay_pattern_mask)
# revert the pattern delay mask by filtering the pad token id
input_ids = input_ids[input_ids != self.generation_config.pad_token_id].reshape(
1, self.decoder.num_codebooks, -1
)
# append the frame dimension back to the audio codes
input_ids = input_ids[None, ...]
# send the input_ids to the correct device
input_ids = input_ids.to(self.audio_encoder.device)
if self.decoder.config.audio_channels == 1:
output_values = self.audio_encoder.decode(
input_ids,
audio_scales=[None],
).audio_values
else:
codec_outputs_left = self.audio_encoder.decode(input_ids[:, :, ::2, :], audio_scales=[None])
output_values_left = codec_outputs_left.audio_values
codec_outputs_right = self.audio_encoder.decode(input_ids[:, :, 1::2, :], audio_scales=[None])
output_values_right = codec_outputs_right.audio_values
output_values = torch.cat([output_values_left, output_values_right], dim=1)
audio_values = output_values[0, 0]
return audio_values.cpu().float().numpy()
def put(self, value):
batch_size = value.shape[0] // self.decoder.num_codebooks
if batch_size > 1:
raise ValueError("MusicgenStreamer only supports batch size 1")
if self.token_cache is None:
self.token_cache = value
else:
self.token_cache = torch.concatenate([self.token_cache, value[:, None]], dim=-1)
if self.token_cache.shape[-1] % self.play_steps == 0:
audio_values = self.apply_delay_pattern_mask(self.token_cache)
self.on_finalized_audio(audio_values[self.to_yield : -self.stride])
self.to_yield = len(audio_values) - self.stride
self.previous_len = len(audio_values)
def end(self, stream_end=False, final_end=False):
"""Flushes any remaining cache and appends the stop symbol."""
if self.token_cache is not None:
audio_values = self.apply_delay_pattern_mask(self.token_cache)
else:
audio_values = np.zeros(self.to_yield)
if final_end:
self.on_finalized_audio(audio_values[self.to_yield :], stream_end=True)
def on_finalized_audio(self, audio: np.ndarray, stream_end: bool = False):
"""Put the new audio in the queue. If the stream is ending, also put a stop signal in the queue."""
self.audio_queue.put(audio, timeout=self.timeout)
if stream_end:
self.audio_queue.put(self.stop_signal, timeout=self.timeout)
def __iter__(self):
return self
def __next__(self):
value = self.audio_queue.get(timeout=self.timeout)
if not isinstance(value, np.ndarray) and value == self.stop_signal:
raise StopIteration()
else:
return value
sampling_rate = model.audio_encoder.config.sampling_rate
frame_rate = model.audio_encoder.config.frame_rate
target_dtype = np.int16
max_range = np.iinfo(target_dtype).max
def wave_header_chunk(frame_input=b"", channels=1, sample_width=2, sample_rate=24000):
# This will create a wave header then append the frame input
# It should be first on a streaming wav file
# Other frames better should not have it (else you will hear some artifacts each chunk start)
wav_buf = io.BytesIO()
with wave.open(wav_buf, "wb") as vfout:
vfout.setnchannels(channels)
vfout.setsampwidth(sample_width)
vfout.setframerate(sample_rate)
vfout.writeframes(frame_input)
wav_buf.seek(0)
return wav_buf.read()
@spaces.GPU(duration=90)
def generate_audio(text_prompt, audio, seed=0):
audio_length_in_s = 60
max_new_tokens = int(frame_rate * audio_length_in_s)
play_steps_in_s = 2.0
play_steps = int(frame_rate * play_steps_in_s)
if audio is not None:
audio = torchaudio.load(audio)
audio = convert_audio(audio[0], audio[1], demucs.samplerate, demucs.audio_channels)
audio = apply_model(demucs, audio[None])
device = "cuda:0" if torch.cuda.is_available() else "cpu"
if device != model.device:
model.to(device)
if device == "cuda:0":
model.half()
if audio is not None:
inputs = processor(
text=text_prompt,
padding=True,
return_tensors="pt",
audio=audio, sampling_rate=demucs.samplerate
)
if device == "cuda:0":
inputs["input_features"] = inputs["input_features"].to(torch.float16)
else:
inputs = processor(
text=text_prompt,
padding=True,
return_tensors="pt",
)
streamer = MusicgenStreamer(model, device=device, play_steps=play_steps, is_longform=True,
longform_stride=15*32000)
generation_kwargs = dict(
**inputs.to(device),
temperature=1.2,
streamer=streamer,
max_new_tokens=min(max_new_tokens, 1503),
max_longform_generation_length=max_new_tokens,
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
yield wave_header_chunk()
set_seed(seed)
for new_audio in streamer:
print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
new_audio = (new_audio * max_range).astype(np.int16)
# (sampling_rate, new_audio)
yield new_audio.tobytes()
demo = gr.Interface(
fn=generate_audio,
inputs=[
gr.Text(label="Prompt", value="80s pop track with synth and instrumentals"),
gr.Audio(type="filepath", label="Conditioning audio. Use this for melody-guided generation."),
gr.Number(value=5, precision=0, step=1, minimum=0, label="Seed for random generations."),
],
outputs=[
gr.Audio(label="Generated Music", autoplay=True, interactive=False, streaming=True)
],
examples=[
["An 80s driving pop song with heavy drums and synth pads in the background", None, 5],
["Bossa nova with guitars and synthesizer", "./assets/assets_bolero_ravel.mp3", 5],
["90s rock song with electric guitar and heavy drums", "./assets/assets_bach.mp3", 5],
["a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130", None, 5],
["lofi slow bpm electro chill with organic samples", None, 5],
],
title=title,
description=description,
allow_flagging=False,
article=article,
cache_examples=False,
)
demo.queue().launch(debug=True)