Spaces:
Sleeping
Sleeping
import gradio as gr | |
from sentence_transformers import SentenceTransformer, util | |
# Load the pre-trained sentence transformer model | |
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
def inference(text1, text2): | |
# Encode the input sentences into sentence embeddings | |
embeddings1 = model.encode(text1, convert_to_tensor=True) | |
embeddings2 = model.encode(text2, convert_to_tensor=True) | |
# Calculate the cosine similarity between the two sentence embeddings | |
similarity_score = util.pytorch_cos_sim(embeddings1, embeddings2).item() | |
return round(similarity_score, 2) | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# Sentence Similarity Calculator | |
Start typing below to see the output. | |
""") | |
txt = gr.Textbox(label="Input 1", lines=2) | |
txt_2 = gr.Textbox(label="Input 2") | |
txt_3 = gr.Textbox(value="", label="Output") | |
btn = gr.Button(value="Submit") | |
btn.click(inference, inputs=[txt, txt_2], outputs=[txt_3]) | |
demo.launch() | |