File size: 8,132 Bytes
21c4e64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import torch

from svd import StableVideoDiffusionPipeline
from diffusers import DDIMScheduler

from PIL import Image
import numpy as np

import torch.nn as nn
import torch.nn.functional as F


class StableVideoDiffusion:
    def __init__(
        self,
        device,
        fp16=True,
        t_range=[0.02, 0.98],
    ):
        super().__init__()

        self.guidance_type = [
            'sds',
            'pixel reconstruction',
            'latent reconstruction'
        ][1]

        self.device = device
        self.dtype = torch.float16 if fp16 else torch.float32

        # Create model
        pipe = StableVideoDiffusionPipeline.from_pretrained(
            "stabilityai/stable-video-diffusion-img2vid", torch_dtype=torch.float16, variant="fp16"
        )
        pipe.to(device)

        self.pipe = pipe

        self.num_train_timesteps = self.pipe.scheduler.config.num_train_timesteps if self.guidance_type == 'sds' else 25
        self.pipe.scheduler.set_timesteps(self.num_train_timesteps, device=device)  # set sigma for euler discrete scheduling

        self.min_step = int(self.num_train_timesteps * t_range[0])
        self.max_step = int(self.num_train_timesteps * t_range[1])
        self.alphas = self.pipe.scheduler.alphas_cumprod.to(self.device)  # for convenience

        self.embeddings = None
        self.image = None
        self.target_cache = None

    @torch.no_grad()
    def get_img_embeds(self, image):
        self.image = Image.fromarray(np.uint8(image*255))

    def encode_image(self, image):
        image = image * 2 -1
        latents = self.pipe._encode_vae_image(image, self.device, num_videos_per_prompt=1, do_classifier_free_guidance=False)
        latents = self.pipe.vae.config.scaling_factor * latents
        return latents
    
    def refine(self,
        pred_rgb,
        steps=25, strength=0.8,
        min_guidance_scale: float = 1.0,
        max_guidance_scale: float = 3.0,
    ):
        # strength = 0.8
        batch_size = pred_rgb.shape[0]
        pred_rgb = pred_rgb.to(self.dtype)

        # interp to 512x512 to be fed into vae.
        pred_rgb_512 = F.interpolate(pred_rgb, (512, 512), mode="bilinear", align_corners=False)
        # encode image into latents with vae, requires grad!

        # latents = []
        # for i in range(batch_size):
        #     latent =  self.encode_image(pred_rgb_512[i:i+1])
        #     latents.append(latent)
        # latents = torch.cat(latents, 0)

        latents = self.encode_image(pred_rgb_512)
        latents = latents.unsqueeze(0)

        if strength == 0:
            init_step = 0
            latents = torch.randn_like(latents)
        else:
            init_step = int(steps * strength)
            latents = self.pipe.scheduler.add_noise(latents, torch.randn_like(latents), self.pipe.scheduler.timesteps[init_step:init_step+1])

        target = self.pipe(
            image=self.image,
            height=512,
            width=512,
            latents=latents,
            denoise_beg=init_step,
            denoise_end=steps,
            output_type='frame', 
            num_frames=batch_size,
            min_guidance_scale=min_guidance_scale,
            max_guidance_scale=max_guidance_scale,
            num_inference_steps=steps,
            decode_chunk_size=1
        ).frames[0]
        target = (target + 1) * 0.5
        target  = target.permute(1,0,2,3)
        return target
            
        # frames = self.pipe(
        #     image=self.image,
        #     height=512,
        #     width=512,
        #     latents=latents,
        #     denoise_beg=init_step,
        #     denoise_end=steps,
        #     num_frames=batch_size,
        #     min_guidance_scale=min_guidance_scale,
        #     max_guidance_scale=max_guidance_scale,
        #     num_inference_steps=steps,
        #     decode_chunk_size=1
        # ).frames[0]
        # export_to_gif(frames, f"tmp.gif")
        # raise
 
    def train_step(
        self,
        pred_rgb,
        step_ratio=None,
        min_guidance_scale: float = 1.0,
        max_guidance_scale: float = 3.0,
    ):
        
        batch_size = pred_rgb.shape[0]
        pred_rgb = pred_rgb.to(self.dtype)

        # interp to 512x512 to be fed into vae.
        pred_rgb_512 = F.interpolate(pred_rgb, (512, 512), mode="bilinear", align_corners=False)
        # encode image into latents with vae, requires grad!
        # latents = self.pipe._encode_image(pred_rgb_512, self.device, num_videos_per_prompt=1, do_classifier_free_guidance=True)
        latents = self.encode_image(pred_rgb_512)
        latents = latents.unsqueeze(0)

        if step_ratio is not None:
            # dreamtime-like
            # t = self.max_step - (self.max_step - self.min_step) * np.sqrt(step_ratio)
            t = np.round((1 - step_ratio) * self.num_train_timesteps).clip(self.min_step, self.max_step)
            t = torch.full((1,), t, dtype=torch.long, device=self.device)
        else:
            t = torch.randint(self.min_step, self.max_step + 1, (1,), dtype=torch.long, device=self.device)
        # print(t)

        w = (1 - self.alphas[t]).view(1, 1, 1, 1)


        if self.guidance_type == 'sds':
            # predict the noise residual with unet, NO grad!
            with torch.no_grad():
                t = self.num_train_timesteps - t.item()
                # add noise
                noise = torch.randn_like(latents)
                latents_noisy = self.pipe.scheduler.add_noise(latents, noise, self.pipe.scheduler.timesteps[t:t+1]) # t=0 noise;t=999 clean
                noise_pred = self.pipe(
                    image=self.image,
                    # image_embeddings=self.embeddings, 
                    height=512,
                    width=512,
                    latents=latents_noisy,
                    output_type='noise', 
                    denoise_beg=t,
                    denoise_end=t + 1,
                    min_guidance_scale=min_guidance_scale,
                    max_guidance_scale=max_guidance_scale,
                    num_frames=batch_size,
                    num_inference_steps=self.num_train_timesteps
                ).frames[0]
            
            grad = w * (noise_pred - noise)
            grad = torch.nan_to_num(grad)

            target = (latents - grad).detach()
            loss = 0.5 * F.mse_loss(latents.float(), target, reduction='sum') / latents.shape[1]
            print(loss.item())
            return loss
        
        elif self.guidance_type == 'pixel reconstruction':
            # pixel space reconstruction
            if self.target_cache is None:
                with torch.no_grad():
                    self.target_cache = self.pipe(
                        image=self.image,
                        height=512,
                        width=512,
                        output_type='frame', 
                        num_frames=batch_size,
                        num_inference_steps=self.num_train_timesteps,
                        decode_chunk_size=1
                    ).frames[0]
                    self.target_cache = (self.target_cache + 1) * 0.5
                    self.target_cache  = self.target_cache.permute(1,0,2,3)

            loss = 0.5 * F.mse_loss(pred_rgb_512.float(), self.target_cache.detach().float(), reduction='sum') / latents.shape[1]
            print(loss.item())

            return loss

        elif self.guidance_type == 'latent reconstruction':
            # latent space reconstruction
            if self.target_cache is None:
                with torch.no_grad():
                    self.target_cache = self.pipe(
                        image=self.image,
                        height=512,
                        width=512,
                        output_type='latent', 
                        num_frames=batch_size,
                        num_inference_steps=self.num_train_timesteps,
                    ).frames[0]

            loss = 0.5 * F.mse_loss(latents.float(), self.target_cache.detach().float(), reduction='sum') / latents.shape[1]
            print(loss.item())

            return loss