Spaces:
Runtime error
Runtime error
rom transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig | |
import gradio as gr | |
from torch.nn import functional as F | |
import seaborn | |
import matplotlib | |
import platform | |
from transformers.file_utils import ModelOutput | |
if platform.system() == "Darwin": | |
print("MacOS") | |
matplotlib.use('Agg') | |
import matplotlib.pyplot as plt | |
import io | |
from PIL import Image | |
import matplotlib.font_manager as fm | |
import util | |
# global var | |
MODEL_NAME = 'yseop/distilbert-base-financial-relation-extraction' | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME) | |
config = AutoConfig.from_pretrained(MODEL_NAME) | |
MODEL_BUF = { | |
"name": MODEL_NAME, | |
"tokenizer": tokenizer, | |
"model": model, | |
"config": config | |
} | |
font_dir = ['./'] | |
for font in fm.findSystemFonts(font_dir): | |
print(font) | |
fm.fontManager.addfont(font) | |
plt.rcParams["font.family"] = 'NanumGothicCoding' | |
def visualize_attention(sent, attention_matrix, n_words=10): | |
def draw(data, x, y, ax): | |
seaborn.heatmap(data, | |
xticklabels=x, square=True, yticklabels=y, vmin=0.0, vmax=1.0, | |
cbar=False, ax=ax) | |
# make plt figure with 1x6 subplots | |
fig = plt.figure(figsize=(16, 8)) | |
# fig.subplots_adjust(hspace=0.7, wspace=0.2) | |
for i, layer in enumerate(range(1, 12, 2)): | |
ax = fig.add_subplot(2, 3, i+1) | |
ax.set_title("Layer {}".format(layer)) | |
draw(attention_matrix[layer], sent if layer > 6 else [], sent if layer in [1,7] else [], ax=ax) | |
fig.tight_layout() | |
plt.close() | |
return fig | |
def change_model_name(name): | |
MODEL_BUF["name"] = name | |
MODEL_BUF["tokenizer"] = AutoTokenizer.from_pretrained(name) | |
MODEL_BUF["model"] = AutoModelForSequenceClassification.from_pretrained(name) | |
MODEL_BUF["config"] = AutoConfig.from_pretrained(name) | |
def predict(model_name, text): | |
if model_name != MODEL_NAME: | |
change_model_name(model_name) | |
tokenizer = MODEL_BUF["tokenizer"] | |
model = MODEL_BUF["model"] | |
config = MODEL_BUF["config"] | |
tokenized_text = tokenizer([text], return_tensors='pt') | |
input_tokens = tokenizer.convert_ids_to_tokens(tokenized_text.input_ids[0]) | |
input_tokens = util.bytetokens_to_unicdode(input_tokens) if config.model_type in ['roberta', 'gpt', 'gpt2'] else input_tokens | |
model.eval() | |
output, attention = model(**tokenized_text, output_attentions=True, return_dict=False) | |
output = F.softmax(output, dim=-1) | |
result = {} | |
for idx, label in enumerate(output[0].detach().numpy()): | |
result[config.id2label[idx]] = float(label) | |
fig = visualize_attention(input_tokens, attention[0][0].detach().numpy()) | |
return result, fig#.logits.detach()#.numpy()#, output.attentions.detach().numpy() | |
if __name__ == '__main__': | |
text = 'An A-B trust is a joint trust created by a married couple for the purpose of minimizing estate taxes.' | |
model_name_list = [ | |
'yseop/distilbert-base-financial-relation-extraction' | |
] | |
#Create a gradio app with a button that calls predict() | |
app = gr.Interface( | |
fn=predict, | |
inputs=[gr.inputs.Dropdown(model_name_list, label="Model Name"), 'text'], outputs=['label', 'plot'], | |
examples = [[MODEL_BUF["name"], text]], | |
title="FReE", | |
description="Financial relations classifier" | |
) | |
app.launch(inline=False) | |