from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig import gradio as gr from torch.nn import functional as F import seaborn import matplotlib import platform from transformers.file_utils import ModelOutput if platform.system() == "Darwin": print("MacOS") matplotlib.use('Agg') import matplotlib.pyplot as plt import io from PIL import Image import matplotlib.font_manager as fm import util # global var MODEL_NAME = 'yseop/distilbert-base-financial-relation-extraction' tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME) config = AutoConfig.from_pretrained(MODEL_NAME) MODEL_BUF = { "name": MODEL_NAME, "tokenizer": tokenizer, "model": model, "config": config } font_dir = ['./'] for font in fm.findSystemFonts(font_dir): print(font) fm.fontManager.addfont(font) plt.rcParams["font.family"] = 'NanumGothicCoding' def visualize_attention(sent, attention_matrix, n_words=10): def draw(data, x, y, ax): seaborn.heatmap(data, xticklabels=x, square=True, yticklabels=y, vmin=0.0, vmax=1.0, cbar=False, ax=ax) # make plt figure with 1x6 subplots fig = plt.figure(figsize=(16, 8)) # fig.subplots_adjust(hspace=0.7, wspace=0.2) for i, layer in enumerate(range(1, 12, 2)): ax = fig.add_subplot(2, 3, i+1) ax.set_title("Layer {}".format(layer)) draw(attention_matrix[layer], sent if layer > 6 else [], sent if layer in [1,7] else [], ax=ax) fig.tight_layout() plt.close() return fig def change_model_name(name): MODEL_BUF["name"] = name MODEL_BUF["tokenizer"] = AutoTokenizer.from_pretrained(name) MODEL_BUF["model"] = AutoModelForSequenceClassification.from_pretrained(name) MODEL_BUF["config"] = AutoConfig.from_pretrained(name) def predict(model_name, text): if model_name != MODEL_NAME: change_model_name(model_name) tokenizer = MODEL_BUF["tokenizer"] model = MODEL_BUF["model"] config = MODEL_BUF["config"] tokenized_text = tokenizer([text], return_tensors='pt') input_tokens = tokenizer.convert_ids_to_tokens(tokenized_text.input_ids[0]) input_tokens = util.bytetokens_to_unicdode(input_tokens) if config.model_type in ['roberta', 'gpt', 'gpt2'] else input_tokens model.eval() output, attention = model(**tokenized_text, output_attentions=True, return_dict=False) output = F.softmax(output, dim=-1) result = {} for idx, label in enumerate(output[0].detach().numpy()): result[config.id2label[idx]] = float(label) fig = visualize_attention(input_tokens, attention[0][0].detach().numpy()) return result, fig#.logits.detach()#.numpy()#, output.attentions.detach().numpy() if __name__ == '__main__': text = 'An A-B trust is a joint trust created by a married couple for the purpose of minimizing estate taxes.' model_name_list = [ 'yseop/distilbert-base-financial-relation-extraction' ] #Create a gradio app with a button that calls predict() app = gr.Interface( fn=predict, inputs=[gr.inputs.Dropdown(model_name_list, label="Model Name"), 'text'], outputs=['label', 'plot'], examples = [[MODEL_BUF["name"], text]], title="FReE", description="Financial relations classifier" ) app.launch(inline=False)