LLaVA_v1 / llava /eval /summarize_gpt_review.py
badayvedat's picture
feat: Add LLaVA model
a824a18
raw
history blame
2.01 kB
import json
import os
from collections import defaultdict
import numpy as np
import argparse
def parse_args():
parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.')
parser.add_argument('-d', '--dir', default=None)
parser.add_argument('-f', '--files', nargs='*', default=None)
parser.add_argument('-i', '--ignore', nargs='*', default=None)
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
if args.ignore is not None:
args.ignore = [int(x) for x in args.ignore]
if args.files is not None and len(args.files) > 0:
review_files = args.files
else:
review_files = [x for x in os.listdir(args.dir) if x.endswith('.jsonl') and (x.startswith('gpt4_text') or x.startswith('reviews_') or x.startswith('review_'))]
for review_file in sorted(review_files):
config = os.path.basename(review_file).replace('gpt4_text_', '').replace('.jsonl', '')
scores = defaultdict(list)
print(config)
with open(os.path.join(args.dir, review_file) if args.dir is not None else review_file) as f:
for review_str in f:
review = json.loads(review_str)
if args.ignore is not None and review['question_id'] in args.ignore:
continue
if 'category' in review:
scores[review['category']].append(review['tuple'])
scores['all'].append(review['tuple'])
else:
if 'tuple' in review:
scores['all'].append(review['tuple'])
else:
scores['all'].append(review['score'])
for k, v in sorted(scores.items()):
stats = np.asarray(v).mean(0).tolist()
stats = [round(x, 3) for x in stats]
# print(k, stats, round(stats[1]/stats[0]*100, 1))
print(k, round(stats[1]/stats[0]*100, 1))
print('=================================')