Spaces:
Runtime error
Runtime error
File size: 3,747 Bytes
7bb9dbf 84c2ca3 7bb9dbf 50db88f 7bb9dbf 0d6dd81 7bb9dbf 4700be2 7bb9dbf 59506cd 7bb9dbf 59506cd 3d2ca92 7951125 59506cd 7bb9dbf 4700be2 7bb9dbf d6b591b 141a4e3 7bb9dbf 79a74e1 4700be2 7bb9dbf 4f1896d 7bb9dbf 79a74e1 7bb9dbf 59506cd 79a74e1 7bb9dbf 4700be2 7bb9dbf 59506cd 6e0be5b 4700be2 7bb9dbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
import gradio as gr
import os
import requests
import time
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import paddlehub as hub
HF_TOKEN = os.environ["HF_TOKEN"]
model = hub.Module(name='ernie_vilg')
def get_ernie_vilg(text_prompts, style):
style = style.split('-')[0]
results = model.generate_image(text_prompts=text_prompts, style=style, visualization=False)
return results[0]
sd_inf = gr.Blocks.load(name="spaces/stabilityai/stable-diffusion", use_auth_token=HF_TOKEN)
nllb_model_name = 'facebook/nllb-200-distilled-600M'
nllb_model = AutoModelForSeq2SeqLM.from_pretrained(nllb_model_name)
nllb_tokenizer = AutoTokenizer.from_pretrained(nllb_model_name)
def get_chinese_translation(text): #in_language_first, in_language_second,
print("********Inside get_chinese_translation ********")
src = 'eng_Latn'
tgt= 'zho_Hans'
print(f"text is :{text}, source language is : {src}, target language is : {tgt} ")
translator = pipeline('translation', model=nllb_model, tokenizer=nllb_tokenizer, src_lang=src, tgt_lang=tgt)
output = translator(text, max_length=400)
print(f"initial output is:{output}")
output = output[0]['translation_text']
print(f"output is:{output}")
return output
#Block inference not working for stable diffusion
def get_sd(translated_txt, samples, steps, scale, seed):
print("******** Inside get_SD ********")
print(f"translated_txt is : {translated_txt}")
sd_img_gallery = sd_inf(translated_txt, samples, steps, scale, seed, fn_index=1)[0]
return sd_img_gallery
demo = gr.Blocks()
with demo:
gr.Markdown("<h1><center>ERNIE in English !</center></h1>")
gr.Markdown("<h3><center>ERNIE-ViLG is a state-of-the-art text-to-image model that generates images from simplified Chinese text.</center></h3>")
gr.Markdown("<h3><center>This app helps you in checking-out ERNIE in English. Note that due to limitations on available Ram, only one image is being generated at the moment<br><br>Please access the original model here - [ERNIE-ViLG](https://huggingface.co/spaces/PaddlePaddle/ERNIE-ViLG)</center></h3>")
with gr.Row():
with gr.Column():
in_text_prompt = gr.Textbox(label="Enter English text here")
out_text_chinese = gr.Textbox(label="Text in Simplified Chinese")
b1 = gr.Button("English to Simplified Chinese")
#s1 = gr.Slider(label='samples', value=4, visible=False)
#s2 = gr.Slider(label='steps', value=45, visible=False)
#s3 = gr.Slider(label='scale', value=7.5, visible=False)
#s4 = gr.Slider(label='seed', value=1024, visible=False)
with gr.Row():
with gr.Column():
in_styles = gr.Dropdown(['水彩-WaterColor', '油画-OilPainting', '粉笔画-Painting', '卡通-Cartoon', '蜡笔画-Pencils', '儿童画-ChildrensPaintings', '探索无限-ExploringTheInfinite'])
b2 = gr.Button("Generate Images from Ernie")
out_ernie = gr.Image(type="pil", label="Ernie output for the given prompt")
#out_gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery") #.style(grid=[2, 3], height="auto")
#in_language_first = gr.Textbox(visible=False, value= 'eng_Latn') #'English'
#in_language_second = gr.Textbox(visible=False, value= 'zho_Hans') #'Chinese (Simplified)'
#out_sd = gr.Image(type="pil", label="SD output for the given prompt")
#b3 = gr.Button("Generate Images from SD")
b1.click(get_chinese_translation, in_text_prompt, out_text_chinese ) #[in_language_first, in_language_second,
b2.click(get_ernie_vilg, [out_text_chinese, in_styles], out_ernie)
#b3.click(get_sd, [in_text_prompt,s1,s2,s3,s4], out_sd) #out_gallery )
demo.launch(enable_queue=True, debug=True) |