Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. | |
import torch | |
import xatlas | |
import trimesh | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
from functools import partial | |
# import open3d as o3d | |
# import open3d_zerogpu_fix | |
# import open3d_zerogpu_fix as o3d | |
import open3d as o3d | |
import trimesh | |
# https://github.com/hbb1/2d-gaussian-splatting/blob/19eb5f1e091a582e911b4282fe2832bac4c89f0f/utils/mesh_utils.py#L22C1-L43C18 | |
# def post_process_mesh(mesh, cluster_to_keep=1000): | |
def post_process_mesh(mesh, cluster_to_keep=None): | |
""" | |
Post-process a mesh to filter out floaters and disconnected parts | |
""" | |
import copy | |
mesh_0 = copy.deepcopy(mesh) | |
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm: | |
triangle_clusters, cluster_n_triangles, cluster_area = (mesh_0.cluster_connected_triangles()) | |
cluster_to_keep = min(len(cluster_n_triangles),10) | |
triangle_clusters = np.asarray(triangle_clusters) | |
cluster_n_triangles = np.asarray(cluster_n_triangles) | |
cluster_area = np.asarray(cluster_area) | |
n_cluster = np.sort(cluster_n_triangles.copy())[-cluster_to_keep] | |
n_cluster = max(n_cluster, 50) # filter meshes smaller than 50 | |
triangles_to_remove = cluster_n_triangles[triangle_clusters] < n_cluster | |
mesh_0.remove_triangles_by_mask(triangles_to_remove) | |
mesh_0.remove_unreferenced_vertices() | |
mesh_0.remove_degenerate_triangles() | |
# print("num vertices raw {}".format(len(mesh.vertices))) | |
# print("num vertices post {}".format(len(mesh_0.vertices))) | |
return mesh_0 | |
def smooth_mesh(mesh): | |
import copy | |
mesh_0 = copy.deepcopy(mesh) | |
mesh_0 = mesh_0.filter_smooth_taubin(12) | |
return mesh_0 | |
def to_cam_open3d(viewpoint_stack): | |
camera_traj = [] | |
for i, viewpoint_cam in enumerate(viewpoint_stack): | |
W = viewpoint_cam.image_width | |
H = viewpoint_cam.image_height | |
ndc2pix = torch.tensor([ | |
[W / 2, 0, 0, (W-1) / 2], | |
[0, H / 2, 0, (H-1) / 2], | |
[0, 0, 0, 1]]).float().cuda().T | |
intrins = (viewpoint_cam.projection_matrix @ ndc2pix)[:3,:3].T | |
intrinsic=o3d.camera.PinholeCameraIntrinsic( | |
width=viewpoint_cam.image_width, | |
height=viewpoint_cam.image_height, | |
cx = intrins[0,2].item(), | |
cy = intrins[1,2].item(), | |
fx = intrins[0,0].item(), | |
fy = intrins[1,1].item() | |
) | |
extrinsic=np.asarray((viewpoint_cam.world_view_transform.T).cpu().numpy()) | |
camera = o3d.camera.PinholeCameraParameters() | |
camera.extrinsic = extrinsic | |
camera.intrinsic = intrinsic | |
camera_traj.append(camera) | |
return camera_traj | |
def to_cam_open3d_compat(gs_foramt_c): | |
W = H = image_width = image_height = 512 | |
projection_matrix = gs_foramt_c['projection_matrix'] | |
world_view_transform = gs_foramt_c['cam_view'] | |
# camera_traj = [] | |
# for i, viewpoint_cam in enumerate(viewpoint_stack): | |
# W = viewpoint_cam.image_width | |
# H = viewpoint_cam.image_height | |
ndc2pix = torch.tensor([ | |
[W / 2, 0, 0, (W-1) / 2], | |
[0, H / 2, 0, (H-1) / 2], | |
[0, 0, 0, 1]]).float().T | |
intrins = (projection_matrix @ ndc2pix)[:3,:3].T | |
intrinsic=o3d.camera.PinholeCameraIntrinsic( | |
width=image_width, | |
height=image_height, | |
cx = intrins[0,2].item(), | |
cy = intrins[1,2].item(), | |
fx = intrins[0,0].item(), | |
fy = intrins[1,1].item() | |
) | |
extrinsic=np.asarray((world_view_transform.T).cpu().numpy()) | |
camera = o3d.camera.PinholeCameraParameters() | |
camera.extrinsic = extrinsic | |
camera.intrinsic = intrinsic | |
# camera_traj.append(camera) | |
return camera | |
# return camera_traj | |
def save_obj(pointnp_px3, facenp_fx3, colornp_px3, fpath): | |
pointnp_px3 = pointnp_px3 @ np.array([[1, 0, 0], [0, 1, 0], [0, 0, -1]]) | |
facenp_fx3 = facenp_fx3[:, [2, 1, 0]] | |
mesh = trimesh.Trimesh( | |
vertices=pointnp_px3, | |
faces=facenp_fx3, | |
vertex_colors=colornp_px3, | |
) | |
mesh.export(fpath, 'obj') | |
def save_glb(pointnp_px3, facenp_fx3, colornp_px3, fpath): | |
pointnp_px3 = pointnp_px3 @ np.array([[-1, 0, 0], [0, 1, 0], [0, 0, -1]]) | |
mesh = trimesh.Trimesh( | |
vertices=pointnp_px3, | |
faces=facenp_fx3, | |
vertex_colors=colornp_px3, | |
) | |
mesh.export(fpath, 'glb') | |
def save_obj_with_mtl(pointnp_px3, tcoords_px2, facenp_fx3, facetex_fx3, texmap_hxwx3, fname): | |
import os | |
fol, na = os.path.split(fname) | |
na, _ = os.path.splitext(na) | |
matname = '%s/%s.mtl' % (fol, na) | |
fid = open(matname, 'w') | |
fid.write('newmtl material_0\n') | |
fid.write('Kd 1 1 1\n') | |
fid.write('Ka 0 0 0\n') | |
fid.write('Ks 0.4 0.4 0.4\n') | |
fid.write('Ns 10\n') | |
fid.write('illum 2\n') | |
fid.write('map_Kd %s.png\n' % na) | |
fid.close() | |
#### | |
fid = open(fname, 'w') | |
fid.write('mtllib %s.mtl\n' % na) | |
for pidx, p in enumerate(pointnp_px3): | |
pp = p | |
fid.write('v %f %f %f\n' % (pp[0], pp[1], pp[2])) | |
for pidx, p in enumerate(tcoords_px2): | |
pp = p | |
fid.write('vt %f %f\n' % (pp[0], pp[1])) | |
fid.write('usemtl material_0\n') | |
for i, f in enumerate(facenp_fx3): | |
f1 = f + 1 | |
f2 = facetex_fx3[i] + 1 | |
fid.write('f %d/%d %d/%d %d/%d\n' % (f1[0], f2[0], f1[1], f2[1], f1[2], f2[2])) | |
fid.close() | |
# save texture map | |
lo, hi = 0, 1 | |
img = np.asarray(texmap_hxwx3, dtype=np.float32) | |
img = (img - lo) * (255 / (hi - lo)) | |
img = img.clip(0, 255) | |
mask = np.sum(img.astype(np.float32), axis=-1, keepdims=True) | |
mask = (mask <= 3.0).astype(np.float32) | |
kernel = np.ones((3, 3), 'uint8') | |
dilate_img = cv2.dilate(img, kernel, iterations=1) | |
img = img * (1 - mask) + dilate_img * mask | |
img = img.clip(0, 255).astype(np.uint8) | |
Image.fromarray(np.ascontiguousarray(img[::-1, :, :]), 'RGB').save(f'{fol}/{na}.png') | |
def loadobj(meshfile): | |
v = [] | |
f = [] | |
meshfp = open(meshfile, 'r') | |
for line in meshfp.readlines(): | |
data = line.strip().split(' ') | |
data = [da for da in data if len(da) > 0] | |
if len(data) != 4: | |
continue | |
if data[0] == 'v': | |
v.append([float(d) for d in data[1:]]) | |
if data[0] == 'f': | |
data = [da.split('/')[0] for da in data] | |
f.append([int(d) for d in data[1:]]) | |
meshfp.close() | |
# torch need int64 | |
facenp_fx3 = np.array(f, dtype=np.int64) - 1 | |
pointnp_px3 = np.array(v, dtype=np.float32) | |
return pointnp_px3, facenp_fx3 | |
def loadobjtex(meshfile): | |
v = [] | |
vt = [] | |
f = [] | |
ft = [] | |
meshfp = open(meshfile, 'r') | |
for line in meshfp.readlines(): | |
data = line.strip().split(' ') | |
data = [da for da in data if len(da) > 0] | |
if not ((len(data) == 3) or (len(data) == 4) or (len(data) == 5)): | |
continue | |
if data[0] == 'v': | |
assert len(data) == 4 | |
v.append([float(d) for d in data[1:]]) | |
if data[0] == 'vt': | |
if len(data) == 3 or len(data) == 4: | |
vt.append([float(d) for d in data[1:3]]) | |
if data[0] == 'f': | |
data = [da.split('/') for da in data] | |
if len(data) == 4: | |
f.append([int(d[0]) for d in data[1:]]) | |
ft.append([int(d[1]) for d in data[1:]]) | |
elif len(data) == 5: | |
idx1 = [1, 2, 3] | |
data1 = [data[i] for i in idx1] | |
f.append([int(d[0]) for d in data1]) | |
ft.append([int(d[1]) for d in data1]) | |
idx2 = [1, 3, 4] | |
data2 = [data[i] for i in idx2] | |
f.append([int(d[0]) for d in data2]) | |
ft.append([int(d[1]) for d in data2]) | |
meshfp.close() | |
# torch need int64 | |
facenp_fx3 = np.array(f, dtype=np.int64) - 1 | |
ftnp_fx3 = np.array(ft, dtype=np.int64) - 1 | |
pointnp_px3 = np.array(v, dtype=np.float32) | |
uvs = np.array(vt, dtype=np.float32) | |
return pointnp_px3, facenp_fx3, uvs, ftnp_fx3 | |
# ============================================================================================== | |
def interpolate(attr, rast, attr_idx, rast_db=None): | |
import nvdiffrast.torch as dr | |
return dr.interpolate(attr.contiguous(), rast, attr_idx, rast_db=rast_db, diff_attrs=None if rast_db is None else 'all') | |
def xatlas_uvmap(ctx, mesh_v, mesh_pos_idx, resolution): | |
import nvdiffrast.torch as dr | |
vmapping, indices, uvs = xatlas.parametrize(mesh_v.detach().cpu().numpy(), mesh_pos_idx.detach().cpu().numpy()) | |
# Convert to tensors | |
indices_int64 = indices.astype(np.uint64, casting='same_kind').view(np.int64) | |
uvs = torch.tensor(uvs, dtype=torch.float32, device=mesh_v.device) | |
mesh_tex_idx = torch.tensor(indices_int64, dtype=torch.int64, device=mesh_v.device) | |
# mesh_v_tex. ture | |
uv_clip = uvs[None, ...] * 2.0 - 1.0 | |
# pad to four component coordinate | |
uv_clip4 = torch.cat((uv_clip, torch.zeros_like(uv_clip[..., 0:1]), torch.ones_like(uv_clip[..., 0:1])), dim=-1) | |
# rasterize | |
rast, _ = dr.rasterize(ctx, uv_clip4, mesh_tex_idx.int(), (resolution, resolution)) | |
# Interpolate world space position | |
gb_pos, _ = interpolate(mesh_v[None, ...], rast, mesh_pos_idx.int()) | |
mask = rast[..., 3:4] > 0 | |
return uvs, mesh_tex_idx, gb_pos, mask | |