File size: 1,115 Bytes
084003f ebf0322 85a9901 ebf0322 084003f 2e7be67 85a9901 ebf0322 85a9901 ebf0322 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import gradio as gr
import openai
import os
import json
import numpy as np
import torch
from transformers import AutoProcessor, AutoModelForCausalLM
openai.organization = os.getenv("API_ORG")
openai.api_key = os.getenv("API_KEY")
app_password = os.getenv("APP_PASSWORD")
app_username = os.getenv("APP_USERNAME")
checkpoint = "openai/clip-vit-base-patch32"
processor = AutoProcessor.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint)
def generate(input_image):
device = "cuda" if torch.cuda.is_available() else "cpu"
inputs = processor(images=input_image, return_tensors="pt").to(device)
pixel_values = inputs.pixel_values
generated_ids = model.generate(pixel_values=pixel_values, max_length=50)
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_caption
demo = gr.Interface(
fn=generate,
inputs=gr.Image(label="Input", elem_id="input_image", type="pil"),
outputs=gr.Text(label="Generated Caption"),
flagging_options=[],
)
demo.launch(share=False, auth=(app_username, app_password))
|