File size: 10,063 Bytes
bcf08c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f5f3ab
 
 
d18f59c
58f6e39
d18f59c
 
832d9b0
bcf08c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
596dc9e
bcf08c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cb1671
bcf08c1
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Copyright (c) 2025 MediaTek Reserch Inc (authors: Chan-Jan Hsu)
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Liu Yue)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR))

import argparse
import gradio as gr
import numpy as np
import torch
torch.set_num_threads(1)
import torchaudio
import random
import librosa
from transformers import pipeline
import subprocess
from scipy.signal import resample

import logging
logging.getLogger('matplotlib').setLevel(logging.WARNING)

from cosyvoice.cli.cosyvoice import CosyVoice
from cosyvoice.utils.file_utils import load_wav, speed_change

#logging.basicConfig(level=logging.DEBUG,
#                    format='%(asctime)s %(levelname)s %(message)s')

def generate_seed():
    seed = random.randint(1, 100000000)
    return {
        "__type__": "update",
        "value": seed
    }

def set_all_random_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)

max_val = 0.8
def postprocess(speech, top_db=60, hop_length=220, win_length=440):
    speech, _ = librosa.effects.trim(
        speech, top_db=top_db,
        frame_length=win_length,
        hop_length=hop_length
    )
    if speech.abs().max() > max_val:
        speech = speech / speech.abs().max() * max_val
    speech = torch.concat([speech, torch.zeros(1, int(target_sr * 0.2))], dim=1)
    return speech

def generate_audio(tts_text, prompt_text, prompt_wav_upload, prompt_wav_record, seed, select_which):
    if select_which == "上傳檔案" and prompt_wav_upload is not None:
        prompt_wav = prompt_wav_upload
    elif select_which == "麥克風" and prompt_wav_record is not None:
        prompt_wav = prompt_wav_record
    else:
        prompt_wav = None
    # if instruct mode, please make sure that model is iic/CosyVoice-300M-Instruct and not cross_lingual mode

    prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
    set_all_random_seed(seed)
    output = cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k)
    speed_factor = 1
    if speed_factor != 1.0:
        #try:
            #audio_data, sample_rate = speed_change(output["tts_speech"], target_sr, str(speed_factor))
            #audio_data = audio_data.numpy().flatten()
        new_length = int(len(output['tts_speech']) / speed_factor)
        audio_data = resample(output['tts_speech'], new_length)
        # except Exception as e:
        #     print(f"Failed to change speed of audio: \n{e}")
    else:
        audio_data = output['tts_speech'].numpy().flatten()

    return (target_sr, audio_data)


def generate_text(prompt_wav_upload, prompt_wav_record, select_which):
    # Determine which input to use based on the selection in select_which
    if select_which == "上傳檔案" and prompt_wav_upload is not None:
        prompt_wav = prompt_wav_upload
        LAST_UPLOADED = "upload"
    elif select_which == "麥克風" and prompt_wav_record is not None:
        prompt_wav = prompt_wav_record
        LAST_UPLOADED = "record"
    else:
        prompt_wav = None
        LAST_UPLOADED = None
    print(select_which)
    # Process with ASR pipeline
    if prompt_wav:
        results = asr_pipeline(prompt_wav)
        return results['text']
    return "No valid input detected."

# LAST_UPLOADED = ""
# def switch_selected(select_which):
#     # Check the file type (assuming WAV file)
#     if select_which == "上傳檔案" and prompt_wav_upload is not None:
#         prompt_wav = prompt_wav_upload
#         LAST_UPLOADED = "upload"
#     elif select_which == "麥克風" and prompt_wav_record is not None:
#         prompt_wav = prompt_wav_record
#     return "麥克風"

def demo_get_audio(tts_text):
    sample_wav = 'sample.wav'
    speech, sample_rate = torchaudio.load(sample_wav)
    
    return sample_rate, speech
def main():
    with gr.Blocks(title="BreezyVoice 語音合成系統", theme="default") as demo:
        # Title and About section at the top
        gr.Markdown("# BreezyVoice 語音合成系統")
        gr.Markdown(
            """### 僅需5秒語音樣本,就可輸出擬真人聲。"""
        )
        with gr.Row():
            gr.Image(value="https://huggingface.co/spaces/Splend1dchan/BreezyVoice-Playground/resolve/main/flowchart.png", interactive=False, scale=3) 
        gr.Markdown(
            """#### 此沙盒使用 Huggingface CPU,請預期大於200 秒的推理時間,您可以考慮以下方法加速:
            1. **強烈建議**複製這個 Space(Duplicate this space),以分散流量!
            2. 複製至本地GPU執行(請參考[指南](https://huggingface.co/docs/hub/en/spaces-overview))或使用[kaggle](https://www.kaggle.com/code/a24998667/breezyvoice-playground)
            3. 複製至本地CPU執行(請參考[指南](https://huggingface.co/docs/hub/en/spaces-overview))

            為了加快推理速度,g2pw注音標註並未被啟動。

            免責聲明:此沙盒在一次性容器地端執行,關閉後檔案將遭到刪除。此沙盒不屬於聯發創新基地,聯發創新基地無法獲得任何使用者輸入。"""
        )

        # All content arranged in a single column
        with gr.Column():
            # Configuration Section
            

            
            # Grouping prompt audio inputs and auto speech recognition in one block using Markdown
            gr.Markdown("### 步驟 1. 音訊樣本輸入 & 音訊樣本文本輸入")
            gr.Markdown("選擇prompt音訊檔案或錄製prompt音訊 (5~15秒),並手動校對自動產生的音訊樣本文本。")
            prompt_wav_upload = gr.Audio(
                sources='upload',
                type='filepath',
                label='選擇prompt音訊檔案(確保取樣率不低於16khz)'
            )
            prompt_wav_record = gr.Audio(
                sources='microphone',
                type='filepath',
                label='錄製prompt音訊檔案'
            )
            
            with gr.Blocks():
                select_which = gr.Radio(["上傳檔案", "麥克風"], label="音訊來源", interactive=True )
            with gr.Blocks():
                prompt_text = gr.Textbox(
                    label="音訊樣本文本輸入(此欄位應與音檔內容完全相同)",
                    lines=2,
                    placeholder="音訊樣本文本"
                )

            # Automatic speech recognition when either prompt audio input changes
            def a(X):
                return "上傳檔案"
            prompt_wav_upload.change(
                fn=a,#lambda file: "上傳檔案",
                inputs=[prompt_wav_upload],
                outputs=select_which
            )

            
            
            

            prompt_wav_record.change(
                fn=lambda recording: "麥克風",
                inputs=[prompt_wav_record],
                outputs=select_which
            )

            select_which.change(
                fn=generate_text,
                inputs=[prompt_wav_upload, prompt_wav_record, select_which],
                outputs=prompt_text
            )
            # select_which.change(
            #     fn=switch_selected,
            #     inputs=[select_which],
            #     outputs= None
            # )
            # Input Section: Synthesis Text

            gr.Markdown("### 步驟 2.合成文本輸入")
            tts_text = gr.Textbox(
                label="輸入想要合成的文本",
                lines=2,
                placeholder="請輸入想要合成的文本...",
                value="你好,歡迎光臨"
            )


            # Output Section
            gr.Markdown("### 步驟 3. 合成音訊")
            # Generation button for audio synthesis (triggered manually)

            with gr.Accordion("進階設定", open=False):
                seed = gr.Number(value=0, label="隨機推理種子")
                #seed_button = gr.Button("隨機")
                seed_button = gr.Button(value="\U0001F3B2生成隨機推理種子\U0001F3B2")
                speed_factor = 1
                # speed_factor = gr.Slider(
                #     minimum=0.25,
                #     maximum=4,
                #     step=0.05,
                #     label="語速",
                #     value=1.0,
                #     interactive=True
                # )

            generate_button = gr.Button("生成音訊")
            audio_output = gr.Audio(label="合成音訊")

            # Set up callbacks for seed generation and audio synthesis
            seed_button.click(fn=generate_seed, inputs=[], outputs=seed)
            generate_button.click(
                fn=generate_audio,
                inputs=[tts_text, prompt_text, prompt_wav_upload, prompt_wav_record, seed, select_which],
                outputs=audio_output
            )

        demo.queue(max_size=10, default_concurrency_limit=1)
        demo.launch()
        
if __name__ == '__main__':
    cosyvoice = CosyVoice('Splend1dchan/BreezyVoice')
    asr_pipeline = pipeline(
        "automatic-speech-recognition",
        model="openai/whisper-tiny",
        tokenizer="openai/whisper-tiny",
        device=0  # Use GPU (if available); set to -1 for CPU
    )
    sft_spk = cosyvoice.list_avaliable_spks()
    prompt_sr, target_sr = 16000, 22050
    default_data = np.zeros(target_sr)
    main()