|
import tempfile |
|
from argparse import Namespace |
|
from pathlib import Path |
|
|
|
import gradio as gr |
|
import soundfile as sf |
|
import torch |
|
|
|
from matcha.cli import ( |
|
MATCHA_URLS, |
|
VOCODER_URLS, |
|
assert_model_downloaded, |
|
get_device, |
|
load_matcha, |
|
load_vocoder, |
|
process_text, |
|
to_waveform, |
|
) |
|
from matcha.utils.utils import get_user_data_dir, plot_tensor |
|
|
|
LOCATION = Path(get_user_data_dir()) |
|
|
|
args = Namespace( |
|
cpu=False, |
|
model="matcha_vctk", |
|
vocoder="hifigan_univ_v1", |
|
spk=0, |
|
) |
|
|
|
CURRENTLY_LOADED_MODEL = args.model |
|
|
|
|
|
def MATCHA_TTS_LOC(x): |
|
return LOCATION / f"{x}.ckpt" |
|
|
|
|
|
def VOCODER_LOC(x): |
|
return LOCATION / f"{x}" |
|
|
|
|
|
LOGO_URL = "https://shivammehta25.github.io/Matcha-TTS/images/logo.png" |
|
RADIO_OPTIONS = { |
|
"Multi Speaker (VCTK)": { |
|
"model": "matcha_vctk", |
|
"vocoder": "hifigan_univ_v1", |
|
}, |
|
"Single Speaker (LJ Speech)": { |
|
"model": "matcha_ljspeech", |
|
"vocoder": "hifigan_T2_v1", |
|
}, |
|
} |
|
|
|
|
|
assert_model_downloaded(MATCHA_TTS_LOC("matcha_ljspeech"), MATCHA_URLS["matcha_ljspeech"]) |
|
assert_model_downloaded(VOCODER_LOC("hifigan_T2_v1"), VOCODER_URLS["hifigan_T2_v1"]) |
|
assert_model_downloaded(MATCHA_TTS_LOC("matcha_vctk"), MATCHA_URLS["matcha_vctk"]) |
|
assert_model_downloaded(VOCODER_LOC("hifigan_univ_v1"), VOCODER_URLS["hifigan_univ_v1"]) |
|
|
|
device = get_device(args) |
|
|
|
|
|
model = load_matcha(args.model, MATCHA_TTS_LOC(args.model), device) |
|
vocoder, denoiser = load_vocoder(args.vocoder, VOCODER_LOC(args.vocoder), device) |
|
|
|
|
|
def load_model(model_name, vocoder_name): |
|
model = load_matcha(model_name, MATCHA_TTS_LOC(model_name), device) |
|
vocoder, denoiser = load_vocoder(vocoder_name, VOCODER_LOC(vocoder_name), device) |
|
return model, vocoder, denoiser |
|
|
|
|
|
def load_model_ui(model_type, textbox): |
|
model_name, vocoder_name = RADIO_OPTIONS[model_type]["model"], RADIO_OPTIONS[model_type]["vocoder"] |
|
|
|
global model, vocoder, denoiser, CURRENTLY_LOADED_MODEL |
|
if CURRENTLY_LOADED_MODEL != model_name: |
|
model, vocoder, denoiser = load_model(model_name, vocoder_name) |
|
CURRENTLY_LOADED_MODEL = model_name |
|
|
|
if model_name == "matcha_ljspeech": |
|
spk_slider = gr.update(visible=False, value=-1) |
|
single_speaker_examples = gr.update(visible=True) |
|
multi_speaker_examples = gr.update(visible=False) |
|
length_scale = gr.update(value=0.95) |
|
else: |
|
spk_slider = gr.update(visible=True, value=0) |
|
single_speaker_examples = gr.update(visible=False) |
|
multi_speaker_examples = gr.update(visible=True) |
|
length_scale = gr.update(value=0.85) |
|
|
|
return ( |
|
textbox, |
|
gr.update(interactive=True), |
|
spk_slider, |
|
single_speaker_examples, |
|
multi_speaker_examples, |
|
length_scale, |
|
) |
|
|
|
|
|
@torch.inference_mode() |
|
def process_text_gradio(text): |
|
output = process_text(1, text, device) |
|
return output["x_phones"][1::2], output["x"], output["x_lengths"] |
|
|
|
|
|
@torch.inference_mode() |
|
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale, spk): |
|
spk = torch.tensor([spk], device=device, dtype=torch.long) if spk >= 0 else None |
|
output = model.synthesise( |
|
text, |
|
text_length, |
|
n_timesteps=n_timesteps, |
|
temperature=temperature, |
|
spks=spk, |
|
length_scale=length_scale, |
|
) |
|
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser) |
|
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp: |
|
sf.write(fp.name, output["waveform"], 22050, "PCM_24") |
|
|
|
return fp.name, plot_tensor(output["mel"].squeeze().cpu().numpy()) |
|
|
|
|
|
def multispeaker_example_cacher(text, n_timesteps, mel_temp, length_scale, spk): |
|
global CURRENTLY_LOADED_MODEL |
|
if CURRENTLY_LOADED_MODEL != "matcha_vctk": |
|
global model, vocoder, denoiser |
|
model, vocoder, denoiser = load_model("matcha_vctk", "hifigan_univ_v1") |
|
CURRENTLY_LOADED_MODEL = "matcha_vctk" |
|
|
|
phones, text, text_lengths = process_text_gradio(text) |
|
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk) |
|
return phones, audio, mel_spectrogram |
|
|
|
|
|
def ljspeech_example_cacher(text, n_timesteps, mel_temp, length_scale, spk=-1): |
|
global CURRENTLY_LOADED_MODEL |
|
if CURRENTLY_LOADED_MODEL != "matcha_ljspeech": |
|
global model, vocoder, denoiser |
|
model, vocoder, denoiser = load_model("matcha_ljspeech", "hifigan_T2_v1") |
|
CURRENTLY_LOADED_MODEL = "matcha_ljspeech" |
|
|
|
phones, text, text_lengths = process_text_gradio(text) |
|
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk) |
|
return phones, audio, mel_spectrogram |
|
|
|
|
|
def main(): |
|
description = """# 🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching |
|
### [Shivam Mehta](https://www.kth.se/profile/smehta), [Ruibo Tu](https://www.kth.se/profile/ruibo), [Jonas Beskow](https://www.kth.se/profile/beskow), [Éva Székely](https://www.kth.se/profile/szekely), and [Gustav Eje Henter](https://people.kth.se/~ghe/) |
|
We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up ODE-based speech synthesis. Our method: |
|
|
|
|
|
* Is probabilistic |
|
* Has compact memory footprint |
|
* Sounds highly natural |
|
* Is very fast to synthesise from |
|
|
|
|
|
Check out our [demo page](https://shivammehta25.github.io/Matcha-TTS). Read our [arXiv preprint for more details](https://arxiv.org/abs/2309.03199). |
|
Code is available in our [GitHub repository](https://github.com/shivammehta25/Matcha-TTS), along with pre-trained models. |
|
|
|
Cached examples are available at the bottom of the page. |
|
""" |
|
|
|
with gr.Blocks(title="🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching") as demo: |
|
processed_text = gr.State(value=None) |
|
processed_text_len = gr.State(value=None) |
|
|
|
with gr.Box(): |
|
with gr.Row(): |
|
gr.Markdown(description, scale=3) |
|
with gr.Column(): |
|
gr.Image(LOGO_URL, label="Matcha-TTS logo", height=50, width=50, scale=1, show_label=False) |
|
html = '<br><iframe width="560" height="315" src="https://www.youtube.com/embed/xmvJkz3bqw0?si=jN7ILyDsbPwJCGoa" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>' |
|
gr.HTML(html) |
|
|
|
with gr.Box(): |
|
radio_options = list(RADIO_OPTIONS.keys()) |
|
model_type = gr.Radio( |
|
radio_options, value=radio_options[0], label="Choose a Model", interactive=True, container=False |
|
) |
|
|
|
with gr.Row(): |
|
gr.Markdown("# Text Input") |
|
with gr.Row(): |
|
text = gr.Textbox(value="", lines=2, label="Text to synthesise", scale=3) |
|
spk_slider = gr.Slider( |
|
minimum=0, maximum=107, step=1, value=args.spk, label="Speaker ID", interactive=True, scale=1 |
|
) |
|
|
|
with gr.Row(): |
|
gr.Markdown("### Hyper parameters") |
|
with gr.Row(): |
|
n_timesteps = gr.Slider( |
|
label="Number of ODE steps", |
|
minimum=1, |
|
maximum=100, |
|
step=1, |
|
value=10, |
|
interactive=True, |
|
) |
|
length_scale = gr.Slider( |
|
label="Length scale (Speaking rate)", |
|
minimum=0.5, |
|
maximum=1.5, |
|
step=0.05, |
|
value=1.0, |
|
interactive=True, |
|
) |
|
mel_temp = gr.Slider( |
|
label="Sampling temperature", |
|
minimum=0.00, |
|
maximum=2.001, |
|
step=0.16675, |
|
value=0.667, |
|
interactive=True, |
|
) |
|
|
|
synth_btn = gr.Button("Synthesise") |
|
|
|
with gr.Box(): |
|
with gr.Row(): |
|
gr.Markdown("### Phonetised text") |
|
phonetised_text = gr.Textbox(interactive=False, scale=10, label="Phonetised text") |
|
|
|
with gr.Box(): |
|
with gr.Row(): |
|
mel_spectrogram = gr.Image(interactive=False, label="mel spectrogram") |
|
|
|
|
|
audio = gr.Audio(interactive=False, label="Audio") |
|
|
|
with gr.Row(visible=False) as example_row_lj_speech: |
|
examples = gr.Examples( |
|
examples=[ |
|
[ |
|
"We propose Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up O D E-based speech synthesis.", |
|
50, |
|
0.677, |
|
0.95, |
|
], |
|
[ |
|
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.", |
|
2, |
|
0.677, |
|
0.95, |
|
], |
|
[ |
|
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.", |
|
4, |
|
0.677, |
|
0.95, |
|
], |
|
[ |
|
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.", |
|
10, |
|
0.677, |
|
0.95, |
|
], |
|
[ |
|
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.", |
|
50, |
|
0.677, |
|
0.95, |
|
], |
|
[ |
|
"The narrative of these events is based largely on the recollections of the participants.", |
|
10, |
|
0.677, |
|
0.95, |
|
], |
|
[ |
|
"The jury did not believe him, and the verdict was for the defendants.", |
|
10, |
|
0.677, |
|
0.95, |
|
], |
|
], |
|
fn=ljspeech_example_cacher, |
|
inputs=[text, n_timesteps, mel_temp, length_scale], |
|
outputs=[phonetised_text, audio, mel_spectrogram], |
|
cache_examples=True, |
|
) |
|
|
|
with gr.Row() as example_row_multispeaker: |
|
multi_speaker_examples = gr.Examples( |
|
examples=[ |
|
[ |
|
"Hello everyone! I am speaker 0 and I am here to tell you that Matcha-TTS is amazing!", |
|
10, |
|
0.677, |
|
0.85, |
|
0, |
|
], |
|
[ |
|
"Hello everyone! I am speaker 16 and I am here to tell you that Matcha-TTS is amazing!", |
|
10, |
|
0.677, |
|
0.85, |
|
16, |
|
], |
|
[ |
|
"Hello everyone! I am speaker 44 and I am here to tell you that Matcha-TTS is amazing!", |
|
50, |
|
0.677, |
|
0.85, |
|
44, |
|
], |
|
[ |
|
"Hello everyone! I am speaker 45 and I am here to tell you that Matcha-TTS is amazing!", |
|
50, |
|
0.677, |
|
0.85, |
|
45, |
|
], |
|
[ |
|
"Hello everyone! I am speaker 58 and I am here to tell you that Matcha-TTS is amazing!", |
|
4, |
|
0.677, |
|
0.85, |
|
58, |
|
], |
|
], |
|
fn=multispeaker_example_cacher, |
|
inputs=[text, n_timesteps, mel_temp, length_scale, spk_slider], |
|
outputs=[phonetised_text, audio, mel_spectrogram], |
|
cache_examples=True, |
|
label="Multi Speaker Examples", |
|
) |
|
|
|
model_type.change(lambda x: gr.update(interactive=False), inputs=[synth_btn], outputs=[synth_btn]).then( |
|
load_model_ui, |
|
inputs=[model_type, text], |
|
outputs=[text, synth_btn, spk_slider, example_row_lj_speech, example_row_multispeaker, length_scale], |
|
) |
|
|
|
synth_btn.click( |
|
fn=process_text_gradio, |
|
inputs=[ |
|
text, |
|
], |
|
outputs=[phonetised_text, processed_text, processed_text_len], |
|
api_name="matcha_tts", |
|
queue=True, |
|
).then( |
|
fn=synthesise_mel, |
|
inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale, spk_slider], |
|
outputs=[audio, mel_spectrogram], |
|
) |
|
|
|
demo.queue().launch(share=True) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|