|
import argparse |
|
import datetime as dt |
|
import os |
|
import warnings |
|
from pathlib import Path |
|
|
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import soundfile as sf |
|
import torch |
|
|
|
from matcha.hifigan.config import v1 |
|
from matcha.hifigan.denoiser import Denoiser |
|
from matcha.hifigan.env import AttrDict |
|
from matcha.hifigan.models import Generator as HiFiGAN |
|
from matcha.models.matcha_tts import MatchaTTS |
|
from matcha.text import sequence_to_text, text_to_sequence |
|
from matcha.utils.utils import assert_model_downloaded, get_user_data_dir, intersperse |
|
|
|
MATCHA_URLS = { |
|
"matcha_ljspeech": "https://github.com/shivammehta25/Matcha-TTS-checkpoints/releases/download/v1.0/matcha_ljspeech.ckpt", |
|
"matcha_vctk": "https://github.com/shivammehta25/Matcha-TTS-checkpoints/releases/download/v1.0/matcha_vctk.ckpt", |
|
} |
|
|
|
VOCODER_URLS = { |
|
"hifigan_T2_v1": "https://github.com/shivammehta25/Matcha-TTS-checkpoints/releases/download/v1.0/generator_v1", |
|
"hifigan_univ_v1": "https://github.com/shivammehta25/Matcha-TTS-checkpoints/releases/download/v1.0/g_02500000", |
|
} |
|
|
|
MULTISPEAKER_MODEL = { |
|
"matcha_vctk": {"vocoder": "hifigan_univ_v1", "speaking_rate": 0.85, "spk": 0, "spk_range": (0, 107)} |
|
} |
|
|
|
SINGLESPEAKER_MODEL = {"matcha_ljspeech": {"vocoder": "hifigan_T2_v1", "speaking_rate": 0.95, "spk": None}} |
|
|
|
|
|
def plot_spectrogram_to_numpy(spectrogram, filename): |
|
fig, ax = plt.subplots(figsize=(12, 3)) |
|
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none") |
|
plt.colorbar(im, ax=ax) |
|
plt.xlabel("Frames") |
|
plt.ylabel("Channels") |
|
plt.title("Synthesised Mel-Spectrogram") |
|
fig.canvas.draw() |
|
plt.savefig(filename) |
|
|
|
|
|
def process_text(i: int, text: str, device: torch.device): |
|
print(f"[{i}] - Input text: {text}") |
|
x = torch.tensor( |
|
intersperse(text_to_sequence(text, ["english_cleaners2"]), 0), |
|
dtype=torch.long, |
|
device=device, |
|
)[None] |
|
x_lengths = torch.tensor([x.shape[-1]], dtype=torch.long, device=device) |
|
x_phones = sequence_to_text(x.squeeze(0).tolist()) |
|
print(f"[{i}] - Phonetised text: {x_phones[1::2]}") |
|
|
|
return {"x_orig": text, "x": x, "x_lengths": x_lengths, "x_phones": x_phones} |
|
|
|
|
|
def get_texts(args): |
|
if args.text: |
|
texts = [args.text] |
|
else: |
|
with open(args.file, encoding="utf-8") as f: |
|
texts = f.readlines() |
|
return texts |
|
|
|
|
|
def assert_required_models_available(args): |
|
save_dir = get_user_data_dir() |
|
if not hasattr(args, "checkpoint_path") and args.checkpoint_path is None: |
|
model_path = args.checkpoint_path |
|
else: |
|
model_path = save_dir / f"{args.model}.ckpt" |
|
assert_model_downloaded(model_path, MATCHA_URLS[args.model]) |
|
|
|
vocoder_path = save_dir / f"{args.vocoder}" |
|
assert_model_downloaded(vocoder_path, VOCODER_URLS[args.vocoder]) |
|
return {"matcha": model_path, "vocoder": vocoder_path} |
|
|
|
|
|
def load_hifigan(checkpoint_path, device): |
|
h = AttrDict(v1) |
|
hifigan = HiFiGAN(h).to(device) |
|
hifigan.load_state_dict(torch.load(checkpoint_path, map_location=device)["generator"]) |
|
_ = hifigan.eval() |
|
hifigan.remove_weight_norm() |
|
return hifigan |
|
|
|
|
|
def load_vocoder(vocoder_name, checkpoint_path, device): |
|
print(f"[!] Loading {vocoder_name}!") |
|
vocoder = None |
|
if vocoder_name in ("hifigan_T2_v1", "hifigan_univ_v1"): |
|
vocoder = load_hifigan(checkpoint_path, device) |
|
else: |
|
raise NotImplementedError( |
|
f"Vocoder {vocoder_name} not implemented! define a load_<<vocoder_name>> method for it" |
|
) |
|
|
|
denoiser = Denoiser(vocoder, mode="zeros") |
|
print(f"[+] {vocoder_name} loaded!") |
|
return vocoder, denoiser |
|
|
|
|
|
def load_matcha(model_name, checkpoint_path, device): |
|
print(f"[!] Loading {model_name}!") |
|
model = MatchaTTS.load_from_checkpoint(checkpoint_path, map_location=device) |
|
_ = model.eval() |
|
|
|
print(f"[+] {model_name} loaded!") |
|
return model |
|
|
|
|
|
def to_waveform(mel, vocoder, denoiser=None): |
|
audio = vocoder(mel).clamp(-1, 1) |
|
if denoiser is not None: |
|
audio = denoiser(audio.squeeze(), strength=0.00025).cpu().squeeze() |
|
|
|
return audio.cpu().squeeze() |
|
|
|
|
|
def save_to_folder(filename: str, output: dict, folder: str): |
|
folder = Path(folder) |
|
folder.mkdir(exist_ok=True, parents=True) |
|
plot_spectrogram_to_numpy(np.array(output["mel"].squeeze().float().cpu()), f"{filename}.png") |
|
np.save(folder / f"{filename}", output["mel"].cpu().numpy()) |
|
sf.write(folder / f"{filename}.wav", output["waveform"], 22050, "PCM_24") |
|
return folder.resolve() / f"{filename}.wav" |
|
|
|
|
|
def validate_args(args): |
|
assert ( |
|
args.text or args.file |
|
), "Either text or file must be provided Matcha-T(ea)TTS need sometext to whisk the waveforms." |
|
assert args.temperature >= 0, "Sampling temperature cannot be negative" |
|
assert args.steps > 0, "Number of ODE steps must be greater than 0" |
|
|
|
if args.checkpoint_path is None: |
|
|
|
if args.model in SINGLESPEAKER_MODEL: |
|
args = validate_args_for_single_speaker_model(args) |
|
|
|
if args.model in MULTISPEAKER_MODEL: |
|
args = validate_args_for_multispeaker_model(args) |
|
else: |
|
|
|
if args.vocoder != "hifigan_univ_v1": |
|
warn_ = "[-] Using custom model checkpoint! I would suggest passing --vocoder hifigan_univ_v1, unless the custom model is trained on LJ Speech." |
|
warnings.warn(warn_, UserWarning) |
|
if args.speaking_rate is None: |
|
args.speaking_rate = 1.0 |
|
|
|
if args.batched: |
|
assert args.batch_size > 0, "Batch size must be greater than 0" |
|
assert args.speaking_rate > 0, "Speaking rate must be greater than 0" |
|
|
|
return args |
|
|
|
|
|
def validate_args_for_multispeaker_model(args): |
|
if args.vocoder is not None: |
|
if args.vocoder != MULTISPEAKER_MODEL[args.model]["vocoder"]: |
|
warn_ = f"[-] Using {args.model} model! I would suggest passing --vocoder {MULTISPEAKER_MODEL[args.model]['vocoder']}" |
|
warnings.warn(warn_, UserWarning) |
|
else: |
|
args.vocoder = MULTISPEAKER_MODEL[args.model]["vocoder"] |
|
|
|
if args.speaking_rate is None: |
|
args.speaking_rate = MULTISPEAKER_MODEL[args.model]["speaking_rate"] |
|
|
|
spk_range = MULTISPEAKER_MODEL[args.model]["spk_range"] |
|
if args.spk is not None: |
|
assert ( |
|
args.spk >= spk_range[0] and args.spk <= spk_range[-1] |
|
), f"Speaker ID must be between {spk_range} for this model." |
|
else: |
|
available_spk_id = MULTISPEAKER_MODEL[args.model]["spk"] |
|
warn_ = f"[!] Speaker ID not provided! Using speaker ID {available_spk_id}" |
|
warnings.warn(warn_, UserWarning) |
|
args.spk = available_spk_id |
|
|
|
return args |
|
|
|
|
|
def validate_args_for_single_speaker_model(args): |
|
if args.vocoder is not None: |
|
if args.vocoder != SINGLESPEAKER_MODEL[args.model]["vocoder"]: |
|
warn_ = f"[-] Using {args.model} model! I would suggest passing --vocoder {SINGLESPEAKER_MODEL[args.model]['vocoder']}" |
|
warnings.warn(warn_, UserWarning) |
|
else: |
|
args.vocoder = SINGLESPEAKER_MODEL[args.model]["vocoder"] |
|
|
|
if args.speaking_rate is None: |
|
args.speaking_rate = SINGLESPEAKER_MODEL[args.model]["speaking_rate"] |
|
|
|
if args.spk != SINGLESPEAKER_MODEL[args.model]["spk"]: |
|
warn_ = f"[-] Ignoring speaker id {args.spk} for {args.model}" |
|
warnings.warn(warn_, UserWarning) |
|
args.spk = SINGLESPEAKER_MODEL[args.model]["spk"] |
|
|
|
return args |
|
|
|
|
|
@torch.inference_mode() |
|
def cli(): |
|
parser = argparse.ArgumentParser( |
|
description=" šµ Matcha-TTS: A fast TTS architecture with conditional flow matching" |
|
) |
|
parser.add_argument( |
|
"--model", |
|
type=str, |
|
default="matcha_ljspeech", |
|
help="Model to use", |
|
choices=MATCHA_URLS.keys(), |
|
) |
|
|
|
parser.add_argument( |
|
"--checkpoint_path", |
|
type=str, |
|
default=None, |
|
help="Path to the custom model checkpoint", |
|
) |
|
|
|
parser.add_argument( |
|
"--vocoder", |
|
type=str, |
|
default=None, |
|
help="Vocoder to use (default: will use the one suggested with the pretrained model))", |
|
choices=VOCODER_URLS.keys(), |
|
) |
|
parser.add_argument("--text", type=str, default=None, help="Text to synthesize") |
|
parser.add_argument("--file", type=str, default=None, help="Text file to synthesize") |
|
parser.add_argument("--spk", type=int, default=None, help="Speaker ID") |
|
parser.add_argument( |
|
"--temperature", |
|
type=float, |
|
default=0.667, |
|
help="Variance of the x0 noise (default: 0.667)", |
|
) |
|
parser.add_argument( |
|
"--speaking_rate", |
|
type=float, |
|
default=None, |
|
help="change the speaking rate, a higher value means slower speaking rate (default: 1.0)", |
|
) |
|
parser.add_argument("--steps", type=int, default=10, help="Number of ODE steps (default: 10)") |
|
parser.add_argument("--cpu", action="store_true", help="Use CPU for inference (default: use GPU if available)") |
|
parser.add_argument( |
|
"--denoiser_strength", |
|
type=float, |
|
default=0.00025, |
|
help="Strength of the vocoder bias denoiser (default: 0.00025)", |
|
) |
|
parser.add_argument( |
|
"--output_folder", |
|
type=str, |
|
default=os.getcwd(), |
|
help="Output folder to save results (default: current dir)", |
|
) |
|
parser.add_argument("--batched", action="store_true", help="Batched inference (default: False)") |
|
parser.add_argument( |
|
"--batch_size", type=int, default=32, help="Batch size only useful when --batched (default: 32)" |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
args = validate_args(args) |
|
device = get_device(args) |
|
print_config(args) |
|
paths = assert_required_models_available(args) |
|
|
|
if args.checkpoint_path is not None: |
|
print(f"[šµ] Loading custom model from {args.checkpoint_path}") |
|
paths["matcha"] = args.checkpoint_path |
|
args.model = "custom_model" |
|
|
|
model = load_matcha(args.model, paths["matcha"], device) |
|
vocoder, denoiser = load_vocoder(args.vocoder, paths["vocoder"], device) |
|
|
|
texts = get_texts(args) |
|
|
|
spk = torch.tensor([args.spk], device=device, dtype=torch.long) if args.spk is not None else None |
|
if len(texts) == 1 or not args.batched: |
|
unbatched_synthesis(args, device, model, vocoder, denoiser, texts, spk) |
|
else: |
|
batched_synthesis(args, device, model, vocoder, denoiser, texts, spk) |
|
|
|
|
|
class BatchedSynthesisDataset(torch.utils.data.Dataset): |
|
def __init__(self, processed_texts): |
|
self.processed_texts = processed_texts |
|
|
|
def __len__(self): |
|
return len(self.processed_texts) |
|
|
|
def __getitem__(self, idx): |
|
return self.processed_texts[idx] |
|
|
|
|
|
def batched_collate_fn(batch): |
|
x = [] |
|
x_lengths = [] |
|
|
|
for b in batch: |
|
x.append(b["x"].squeeze(0)) |
|
x_lengths.append(b["x_lengths"]) |
|
|
|
x = torch.nn.utils.rnn.pad_sequence(x, batch_first=True) |
|
x_lengths = torch.concat(x_lengths, dim=0) |
|
return {"x": x, "x_lengths": x_lengths} |
|
|
|
|
|
def batched_synthesis(args, device, model, vocoder, denoiser, texts, spk): |
|
total_rtf = [] |
|
total_rtf_w = [] |
|
processed_text = [process_text(i, text, "cpu") for i, text in enumerate(texts)] |
|
dataloader = torch.utils.data.DataLoader( |
|
BatchedSynthesisDataset(processed_text), |
|
batch_size=args.batch_size, |
|
collate_fn=batched_collate_fn, |
|
num_workers=8, |
|
) |
|
for i, batch in enumerate(dataloader): |
|
i = i + 1 |
|
start_t = dt.datetime.now() |
|
output = model.synthesise( |
|
batch["x"].to(device), |
|
batch["x_lengths"].to(device), |
|
n_timesteps=args.steps, |
|
temperature=args.temperature, |
|
spks=spk, |
|
length_scale=args.speaking_rate, |
|
) |
|
|
|
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser) |
|
t = (dt.datetime.now() - start_t).total_seconds() |
|
rtf_w = t * 22050 / (output["waveform"].shape[-1]) |
|
print(f"[šµ-Batch: {i}] Matcha-TTS RTF: {output['rtf']:.4f}") |
|
print(f"[šµ-Batch: {i}] Matcha-TTS + VOCODER RTF: {rtf_w:.4f}") |
|
total_rtf.append(output["rtf"]) |
|
total_rtf_w.append(rtf_w) |
|
for j in range(output["mel"].shape[0]): |
|
base_name = f"utterance_{j:03d}_speaker_{args.spk:03d}" if args.spk is not None else f"utterance_{j:03d}" |
|
length = output["mel_lengths"][j] |
|
new_dict = {"mel": output["mel"][j][:, :length], "waveform": output["waveform"][j][: length * 256]} |
|
location = save_to_folder(base_name, new_dict, args.output_folder) |
|
print(f"[šµ-{j}] Waveform saved: {location}") |
|
|
|
print("".join(["="] * 100)) |
|
print(f"[šµ] Average Matcha-TTS RTF: {np.mean(total_rtf):.4f} Ā± {np.std(total_rtf)}") |
|
print(f"[šµ] Average Matcha-TTS + VOCODER RTF: {np.mean(total_rtf_w):.4f} Ā± {np.std(total_rtf_w)}") |
|
print("[šµ] Enjoy the freshly whisked šµ Matcha-TTS!") |
|
|
|
|
|
def unbatched_synthesis(args, device, model, vocoder, denoiser, texts, spk): |
|
total_rtf = [] |
|
total_rtf_w = [] |
|
for i, text in enumerate(texts): |
|
i = i + 1 |
|
base_name = f"utterance_{i:03d}_speaker_{args.spk:03d}" if args.spk is not None else f"utterance_{i:03d}" |
|
|
|
print("".join(["="] * 100)) |
|
text = text.strip() |
|
text_processed = process_text(i, text, device) |
|
|
|
print(f"[šµ] Whisking Matcha-T(ea)TS for: {i}") |
|
start_t = dt.datetime.now() |
|
output = model.synthesise( |
|
text_processed["x"], |
|
text_processed["x_lengths"], |
|
n_timesteps=args.steps, |
|
temperature=args.temperature, |
|
spks=spk, |
|
length_scale=args.speaking_rate, |
|
) |
|
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser) |
|
|
|
t = (dt.datetime.now() - start_t).total_seconds() |
|
rtf_w = t * 22050 / (output["waveform"].shape[-1]) |
|
print(f"[šµ-{i}] Matcha-TTS RTF: {output['rtf']:.4f}") |
|
print(f"[šµ-{i}] Matcha-TTS + VOCODER RTF: {rtf_w:.4f}") |
|
total_rtf.append(output["rtf"]) |
|
total_rtf_w.append(rtf_w) |
|
|
|
location = save_to_folder(base_name, output, args.output_folder) |
|
print(f"[+] Waveform saved: {location}") |
|
|
|
print("".join(["="] * 100)) |
|
print(f"[šµ] Average Matcha-TTS RTF: {np.mean(total_rtf):.4f} Ā± {np.std(total_rtf)}") |
|
print(f"[šµ] Average Matcha-TTS + VOCODER RTF: {np.mean(total_rtf_w):.4f} Ā± {np.std(total_rtf_w)}") |
|
print("[šµ] Enjoy the freshly whisked šµ Matcha-TTS!") |
|
|
|
|
|
def print_config(args): |
|
print("[!] Configurations: ") |
|
print(f"\t- Model: {args.model}") |
|
print(f"\t- Vocoder: {args.vocoder}") |
|
print(f"\t- Temperature: {args.temperature}") |
|
print(f"\t- Speaking rate: {args.speaking_rate}") |
|
print(f"\t- Number of ODE steps: {args.steps}") |
|
print(f"\t- Speaker: {args.spk}") |
|
|
|
|
|
def get_device(args): |
|
if torch.cuda.is_available() and not args.cpu: |
|
print("[+] GPU Available! Using GPU") |
|
device = torch.device("cuda") |
|
else: |
|
print("[-] GPU not available or forced CPU run! Using CPU") |
|
device = torch.device("cpu") |
|
return device |
|
|
|
|
|
if __name__ == "__main__": |
|
cli() |
|
|