import cv2 import numpy as np import matplotlib.pyplot as plt import gradio as gr def retinex(image, sigma_list): """ Apply Retinex algorithm to enhance image. :param image: Input image (BGR format) :param sigma_list: List of sigma values for Gaussian blur :return: Retinex enhanced image """ # Convert image to float32 image = np.float32(image) + 1.0 # Initialize the Retinex result retinex_result = np.zeros_like(image) for sigma in sigma_list: # Apply Gaussian blur blurred = cv2.GaussianBlur(image, (0, 0), sigma) # Compute the Retinex result retinex_result += np.log(image) - np.log(blurred) # Normalize and convert back to uint8 retinex_result = retinex_result / len(sigma_list) retinex_result = np.exp(retinex_result) retinex_result = cv2.normalize(retinex_result, None, 0, 255, cv2.NORM_MINMAX) retinex_result = np.uint8(retinex_result) return retinex_result def enhance_feeble_light_signals(image, alpha, beta, clip_limit, gamma, sigma_list): # Apply Retinex enhancement retinex_image = retinex(image, sigma_list) # Convert to LAB color space lab_image = cv2.cvtColor(retinex_image, cv2.COLOR_BGR2LAB) # Split the LAB image into channels l, a, b = cv2.split(lab_image) # Apply CLAHE (Contrast Limited Adaptive Histogram Equalization) to the L channel clahe = cv2.createCLAHE(clipLimit=clip_limit, tileGridSize=(8,8)) cl = clahe.apply(l) # Merge the CLAHE enhanced L channel back with a and b channels lab_image_clahe = cv2.merge((cl, a, b)) # Convert back to BGR color space enhanced_image = cv2.cvtColor(lab_image_clahe, cv2.COLOR_LAB2BGR) # Brighten the image by adjusting contrast (alpha) and brightness (beta) brightened_image = cv2.convertScaleAbs(enhanced_image, alpha=alpha, beta=beta) # Apply Gamma Correction gamma_corrected = np.power(brightened_image / 255.0, gamma) gamma_corrected = np.uint8(gamma_corrected * 255) return gamma_corrected def process_image(input_image, alpha, beta, clip_limit, gamma): # Convert image to the format compatible with OpenCV input_image = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR) # Define sigma values for Retinex algorithm sigma_list = [15, 80, 250] # You can adjust this as needed # Enhance the image using Retinex and other adjustments output_image = enhance_feeble_light_signals(input_image, alpha, beta, clip_limit, gamma, sigma_list) # Convert output image back to RGB for displaying output_image = cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB) return input_image, output_image # Define the Gradio interface interface = gr.Interface( fn=process_image, inputs=[ gr.Image(type="numpy", label="Input Image"), gr.Slider(minimum=1.0, maximum=10.0, value=3.0, label="Alpha (Contrast)"), gr.Slider(minimum=0, maximum=100, value=20, label="Beta (Brightness)"), gr.Slider(minimum=1.0, maximum=15.0, value=10.0, label="CLAHE Clip Limit"), gr.Slider(minimum=0.1, maximum=10.0, value=1.5, label="Gamma Correction"), ], outputs=[ gr.Image(type="numpy", label="Input Image"), gr.Image(type="numpy", label="Enhanced Image")], title="Feeble Light Signal Image Enhancer", description="Upload a dark image, and enhance it using Retinex, CLAHE, contrast, brightness, and gamma correction." ) # Launch the Gradio app interface.launch()