Spaces:
Running
Running
import cv2 | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import gradio as gr | |
def retinex(image, sigma_list): | |
""" | |
Apply Retinex algorithm to enhance image. | |
:param image: Input image (BGR format) | |
:param sigma_list: List of sigma values for Gaussian blur | |
:return: Retinex enhanced image | |
""" | |
# Convert image to float32 | |
image = np.float32(image) + 1.0 | |
# Initialize the Retinex result | |
retinex_result = np.zeros_like(image) | |
for sigma in sigma_list: | |
# Apply Gaussian blur | |
blurred = cv2.GaussianBlur(image, (0, 0), sigma) | |
# Compute the Retinex result | |
retinex_result += np.log(image) - np.log(blurred) | |
# Normalize and convert back to uint8 | |
retinex_result = retinex_result / len(sigma_list) | |
retinex_result = np.exp(retinex_result) | |
retinex_result = cv2.normalize(retinex_result, None, 0, 255, cv2.NORM_MINMAX) | |
retinex_result = np.uint8(retinex_result) | |
return retinex_result | |
def enhance_feeble_light_signals(image, alpha, beta, clip_limit, gamma, sigma_list): | |
# Apply Retinex enhancement | |
retinex_image = retinex(image, sigma_list) | |
# Convert to LAB color space | |
lab_image = cv2.cvtColor(retinex_image, cv2.COLOR_BGR2LAB) | |
# Split the LAB image into channels | |
l, a, b = cv2.split(lab_image) | |
# Apply CLAHE (Contrast Limited Adaptive Histogram Equalization) to the L channel | |
clahe = cv2.createCLAHE(clipLimit=clip_limit, tileGridSize=(8,8)) | |
cl = clahe.apply(l) | |
# Merge the CLAHE enhanced L channel back with a and b channels | |
lab_image_clahe = cv2.merge((cl, a, b)) | |
# Convert back to BGR color space | |
enhanced_image = cv2.cvtColor(lab_image_clahe, cv2.COLOR_LAB2BGR) | |
# Brighten the image by adjusting contrast (alpha) and brightness (beta) | |
brightened_image = cv2.convertScaleAbs(enhanced_image, alpha=alpha, beta=beta) | |
# Apply Gamma Correction | |
gamma_corrected = np.power(brightened_image / 255.0, gamma) | |
gamma_corrected = np.uint8(gamma_corrected * 255) | |
return gamma_corrected | |
def process_image(input_image, alpha, beta, clip_limit, gamma): | |
# Convert image to the format compatible with OpenCV | |
input_image = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR) | |
# Define sigma values for Retinex algorithm | |
sigma_list = [15, 80, 250] # You can adjust this as needed | |
# Enhance the image using Retinex and other adjustments | |
output_image = enhance_feeble_light_signals(input_image, alpha, beta, clip_limit, gamma, sigma_list) | |
# Convert output image back to RGB for displaying | |
output_image = cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB) | |
return output_image | |
# Define the Gradio interface | |
interface = gr.Interface( | |
fn=process_image, | |
inputs=[ | |
gr.Image(type="numpy", label="Input Image"), | |
gr.Slider(minimum=1.0, maximum=10.0, value=3.0, label="Alpha (Contrast)"), | |
gr.Slider(minimum=0, maximum=100, value=20, label="Beta (Brightness)"), | |
gr.Slider(minimum=1.0, maximum=15.0, value=10.0, label="CLAHE Clip Limit"), | |
gr.Slider(minimum=0.1, maximum=10.0, value=1.5, label="Gamma Correction"), | |
], | |
outputs=gr.Image(type="numpy", label="Enhanced Image"), # Only the enhanced image is shown | |
title="Feeble Light Signal Image Enhancer", | |
description="Upload a dark image, and enhance it using Retinex, CLAHE, contrast, brightness, and gamma correction." | |
) | |
# Launch the Gradio app | |
interface.launch() | |