|
import gradio as gr |
|
from huggingface_hub import from_pretrained_keras |
|
from tensorflow.keras.preprocessing.image import load_img |
|
from tensorflow.keras.preprocessing.image import img_to_array |
|
from tensorflow.keras.preprocessing import image |
|
import numpy as np |
|
|
|
model = from_pretrained_keras("yusyel/fishv2") |
|
|
|
|
|
class_names = [ |
|
"Black Sea Sprat", |
|
"Gilt-Head Bream", |
|
"Hourse Mackerel", |
|
"Red Sea Bream", |
|
"Red Mullet", |
|
"Sea Bass", |
|
"Shrimp", |
|
"Striped Red Mullet", |
|
"Trout", |
|
] |
|
|
|
|
|
def preprocess_image(img, label): |
|
img = load_img(img, target_size=(199, 199)) |
|
img = image.img_to_array(img) |
|
img = np.expand_dims(img, axis=0) |
|
img /= 255.0 |
|
print(img.shape) |
|
return img, label |
|
|
|
|
|
|
|
def predict(img): |
|
img, _ = preprocess_image(img, 1) |
|
pred = model.predict(img) |
|
pred = np.squeeze(pred).astype(float) |
|
print(pred) |
|
return dict(zip(class_names, pred)) |
|
|
|
|
|
demo = gr.Interface( |
|
fn=predict, |
|
inputs=[gr.inputs.Image(type="filepath")], |
|
outputs=gr.outputs.Label(), |
|
examples=[ |
|
["./img/Black_Sea_Sprat.png"], |
|
["./img/Gilt_Head_Bream.JPG"], |
|
["./img/Horse_Mackerel.png"], |
|
["./img/Red_mullet.png"], |
|
["./img/Red_Sea_Bream.JPG"], |
|
["./img/Sea_Bass.JPG"], |
|
["./img/Shrimp.png"], |
|
["./img/Striped_Red_Mullet.png"], |
|
["./img/Trout.png"], |
|
], |
|
title="fish classification", |
|
) |
|
|
|
demo.launch() |
|
|