import gradio as gr from huggingface_hub import from_pretrained_keras from tensorflow.keras.preprocessing.image import load_img from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.preprocessing import image import numpy as np model = from_pretrained_keras("yusyel/fishv2") class_names=["Black Sea Sprat", "Gilt-Head Bream", "Hourse Mackerel", "Red Mullet", "Red Sea Bream", "Sea Bass", "Shrimp", "Striped Red Mullet", "Trout"] def preprocess_image(img): img = load_img(img, target_size=(249, 249, 3)) img = image.img_to_array(img) img = np.expand_dims(img, axis=0) img /= 255.0 print(img.shape) return img def predict(img): img = preprocess_image(img) pred = model.predict(img) pred = np.squeeze(pred).astype(float) print(pred) return dict(zip(class_names, pred)) demo = gr.Interface( fn=predict, inputs=[gr.inputs.Image(type="filepath")], outputs=gr.outputs.Label(), examples=[ ["./img/Black_Sea_Sprat.png"], ["./img/Gilt_Head_Bream.JPG"], ["./img/Horse_Mackerel.png"], ["./img/Red_mullet.png"], ["./img/Red_Sea_Bream.JPG"], ["./img/Sea_Bass.JPG"], ["./img/Shrimp.png"], ["./img/Striped_Red_Mullet.png"], ["./img/Trout.png"], ], title="fish classification", ) demo.launch(server_name="0.0.0.0", server_port=7000)