yuting89830 commited on
Commit
f213fc3
1 Parent(s): a8f49dd

Upload 3 files

Browse files
Files changed (2) hide show
  1. app.py +13 -28
  2. requirements.txt +2 -1
app.py CHANGED
@@ -1,40 +1,40 @@
1
  import gradio as gr
2
  from transformers import AutoProcessor, AutoModelForCausalLM
3
  import spaces
4
-
5
 
6
  from PIL import Image
7
 
8
-
9
  import subprocess
10
- subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
11
 
12
- model = AutoModelForCausalLM.from_pretrained('HuggingFaceM4/Florence-2-DocVQA', trust_remote_code=True).to("cuda").eval()
13
 
14
- processor = AutoProcessor.from_pretrained('HuggingFaceM4/Florence-2-DocVQA', trust_remote_code=True)
15
 
 
 
16
 
17
- TITLE = "# [Florence-2-DocVQA Demo](https://huggingface.co/HuggingFaceM4/Florence-2-DocVQA)"
18
- DESCRIPTION = "The demo for Florence-2 fine-tuned on DocVQA dataset. You can find the notebook [here](https://colab.research.google.com/drive/1hKDrJ5AH_o7I95PtZ9__VlCTNAo1Gjpf?usp=sharing). Read more about Florence-2 fine-tuning [here](finetune-florence2)."
19
 
20
 
21
  colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
22
  'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
23
 
24
- @spaces.GPU
25
  def run_example(task_prompt, image, text_input=None):
26
  if text_input is None:
27
  prompt = task_prompt
28
  else:
29
  prompt = task_prompt + text_input
30
- inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
31
  generated_ids = model.generate(
32
  input_ids=inputs["input_ids"],
33
  pixel_values=inputs["pixel_values"],
34
- max_new_tokens=1024,
35
- early_stopping=False,
36
  do_sample=False,
37
- num_beams=3,
38
  )
39
  generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
40
  parsed_answer = processor.post_process_generation(
@@ -61,7 +61,6 @@ css = """
61
 
62
  with gr.Blocks(css=css) as demo:
63
  gr.Markdown(TITLE)
64
- gr.Markdown(DESCRIPTION)
65
  with gr.Tab(label="Florence-2 Image Captioning"):
66
  with gr.Row():
67
  with gr.Column():
@@ -71,20 +70,6 @@ with gr.Blocks(css=css) as demo:
71
  with gr.Column():
72
  output_text = gr.Textbox(label="Output Text")
73
 
74
- gr.Examples(
75
- examples=[
76
- ["hunt.jpg", 'What is this image?'],
77
- ["idefics2_architecture.png", 'How many tokens per image does it use?'],
78
- ["idefics2_architecture.png", "What type of encoder does the model use?"],
79
- ["image.jpg", "What's the share of Industry Switchers Gained?"]
80
- ],
81
- inputs=[input_img, text_input],
82
- outputs=[output_text],
83
- fn=process_image,
84
- cache_examples=True,
85
- label='Try the examples below'
86
- )
87
-
88
  submit_btn.click(process_image, [input_img, text_input], [output_text])
89
 
90
- demo.launch(debug=True)
 
1
  import gradio as gr
2
  from transformers import AutoProcessor, AutoModelForCausalLM
3
  import spaces
4
+ import torch
5
 
6
  from PIL import Image
7
 
 
8
  import subprocess
9
+ # subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
10
 
11
+ torch.set_num_threads(4)
12
 
13
+ model = AutoModelForCausalLM.from_pretrained('HuggingFaceM4/Florence-2-DocVQA', trust_remote_code=True).to("cpu").eval()
14
 
15
+ processor = AutoProcessor.from_pretrained('HuggingFaceM4/Florence-2-DocVQA', trust_remote_code=True)
16
+ model = torch.quantization.quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8)
17
 
18
+ TITLE = "# [Florence-2-DocVQA Demo]"
 
19
 
20
 
21
  colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
22
  'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
23
 
24
+ # @spaces.GPU
25
  def run_example(task_prompt, image, text_input=None):
26
  if text_input is None:
27
  prompt = task_prompt
28
  else:
29
  prompt = task_prompt + text_input
30
+ inputs = processor(text=prompt, images=image, return_tensors="pt").to("cpu")
31
  generated_ids = model.generate(
32
  input_ids=inputs["input_ids"],
33
  pixel_values=inputs["pixel_values"],
34
+ max_new_tokens=64,
35
+ early_stopping=True,
36
  do_sample=False,
37
+ num_beams=1,
38
  )
39
  generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
40
  parsed_answer = processor.post_process_generation(
 
61
 
62
  with gr.Blocks(css=css) as demo:
63
  gr.Markdown(TITLE)
 
64
  with gr.Tab(label="Florence-2 Image Captioning"):
65
  with gr.Row():
66
  with gr.Column():
 
70
  with gr.Column():
71
  output_text = gr.Textbox(label="Output Text")
72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
  submit_btn.click(process_image, [input_img, text_input], [output_text])
74
 
75
+ demo.launch(debug=True)
requirements.txt CHANGED
@@ -1,3 +1,4 @@
1
  spaces
2
  transformers
3
- timm
 
 
1
  spaces
2
  transformers
3
+ timm
4
+ einops