import gradio as gr from transformers import AutoModel, AutoConfig from main_idea_with_torch import predict_mainidea_sent_old from main_idea_with_pipeline import predict_mainidea_sent config = AutoConfig.from_pretrained("yutingg/custom-distill-bert-for-sentence-label", trust_remote_code=True) model = AutoModel.from_pretrained("yutingg/custom-distill-bert-for-sentence-label", trust_remote_code=True, config=config) def predict_main_idea(essay): ret = predict_mainidea_sent(essay, model), predict_mainidea_sent_old(essay, model) return ret with gr.Blocks() as main_idea_demo: with gr.Row(): essay_input = gr.Textbox(label="essay", lines=10) with gr.Row(): predict_button = gr.Button("Predict Main Idea Sentence") with gr.Row(): with gr.Column(scale=1, min_width=600): output_1 = gr.Dataframe( label="pipeline output", headers=['label: is main idea', 'sentence'], datatype=["str", "str"], col_count=(2, "fixed"), ) with gr.Column(scale=1, min_width=600): output_2 = gr.Dataframe( label="torch output with Triage", headers=['label: is main idea', 'sentence'], datatype=["str", "str"], col_count=(2, "fixed"), ) predict_button.click(predict_main_idea, inputs=essay_input, outputs=[output_1, output_2]) main_idea_demo.launch()