File size: 769 Bytes
b6e52db
8c7e04b
 
b6e52db
8c7e04b
b6e52db
 
 
 
 
 
 
 
 
 
 
3788abf
500fd3f
9a19143
 
b6e52db
9a19143
b6704f7
b6e52db
 
 
500fd3f
3788abf
 
48e6ca5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from fastai.vision.all import *
import gradio as gr

def is_cat(x): return x[0].isupper()

# cell
learn = load_learner('model.pkl')

# cell
categories = ['Cat', 'Dog']

def classify_image(img):
    pred,idx,probs = learn.predict(img)
    return dict(zip(categories, map(float, probs)))

# cell

#image = gr.inputs.image(shape=(192, 192))
#label = gr.outputs.Label()
#examples = ['dog.jpg', 'cat.jpg', 'dunno.jpg']

intf = gr.Interface(fn=classify_image, inputs="image", outputs="label")
#intf = gr.Interface(fn=classify_image, inputs="image", outputs="label", examples="examples")
intf.launch(inline=False)

#cell
#import gradio as gr
#gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3)).launch(share=True)