File size: 31,576 Bytes
87d688d 7dc7d16 87d688d 9010930 87d688d 7dc7d16 87d688d 7dc7d16 e16896c 87d688d 7dc7d16 e16896c 87d688d 7dc7d16 e16896c 87d688d e16896c 6f76ecc 87d688d 7dc7d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 |
#! /usr/bin/env python3
# coding=utf-8
# Copyright 2018 The Uber AI Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# print
"""
Example command with bag of words:
python examples/run_pplm.py -B space --cond_text "The president" --length 100 --gamma 1.5 --num_iterations 3 --num_samples 10 --stepsize 0.01 --window_length 5 --kl_scale 0.01 --gm_scale 0.95
Example command with discriminator:
python examples/run_pplm.py -D sentiment --class_label 3 --cond_text "The lake" --length 10 --gamma 1.0 --num_iterations 30 --num_samples 10 --stepsize 0.01 --kl_scale 0.01 --gm_scale 0.95
"""
import gradio as gr
import argparse
import json
from operator import add
from typing import List, Optional, Tuple, Union
from random import choice, randint
import numpy as np
import torch
import torch.nn.functional as F
from torch.autograd import Variable
from tqdm import trange
from transformers import GPT2Tokenizer
from transformers.file_utils import cached_path
from transformers.modeling_gpt2 import GPT2LMHeadModel
from pplm_classification_head import ClassificationHead
PPLM_BOW = 1
PPLM_DISCRIM = 2
PPLM_BOW_DISCRIM = 3
SMALL_CONST = 1e-15
BIG_CONST = 1e10
QUIET = 0
REGULAR = 1
VERBOSE = 2
VERY_VERBOSE = 3
VERBOSITY_LEVELS = {
'quiet': QUIET,
'regular': REGULAR,
'verbose': VERBOSE,
'very_verbose': VERY_VERBOSE,
}
BAG_OF_WORDS_ARCHIVE_MAP = {
'legal': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/legal.txt",
'military': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/military.txt",
'monsters': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/monsters.txt",
'politics': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/politics.txt",
'positive_words': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/positive_words.txt",
'religion': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/religion.txt",
'science': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/science.txt",
'space': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/space.txt",
'technology': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/technology.txt",
}
DISCRIMINATOR_MODELS_PARAMS = {
"clickbait": {
"url": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/discriminators/clickbait_classifier_head.pt",
"class_size": 2,
"embed_size": 1024,
"class_vocab": {"non_clickbait": 0, "clickbait": 1},
"default_class": 1,
"pretrained_model": "gpt2-medium",
},
"sentiment": {
"url": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/discriminators/SST_classifier_head.pt",
"class_size": 5,
"embed_size": 1024,
"class_vocab": {"very_positive": 2, "very_negative": 3},
"default_class": 3,
"pretrained_model": "gpt2-medium",
},
"3_PerSoothe": {
"path": "/content/drive/Shareddrives/COS_IW04_ZL/COSIW04/Discriminators/3_class_opt_lowlr_medgpt/3_PerSoothe_classifier_head_epoch_10.pt",
"class_size": 3,
"embed_size": 1024,
"class_vocab": {"soothes": 0, "neutral": 1, "worsens": 2},
"default_class": 2,
"pretrained_model": "microsoft/DialoGPT-medium",
},
"3_PerSoothe_eot": {
"path": "/content/drive/Shareddrives/COS_IW04_ZL/COSIW04/Discriminators/3_class_opt_eot_lowlr_medgpt/3_PerSoothe_classifier_head_epoch_10.pt",
"class_size": 3,
"embed_size": 1024,
"class_vocab": {"soothes": 0, "neutral": 1, "worsens": 2},
"default_class": 2,
"pretrained_model": "microsoft/DialoGPT-medium",
},
"3_PerSoothe_lrg": {
"class_size": 3,
"embed_size": 1280,
"class_vocab": {"soothes": 0, "neutral": 1, "worsens": 2},
"default_class": 2,
"pretrained_model": "microsoft/DialoGPT-large",
},
"3_PerSoothe_med": {
"class_size": 3,
"embed_size": 1024,
"class_vocab": {"soothes": 0, "neutral": 1, "worsens": 2},
"default_class": 2,
"pretrained_model": "microsoft/DialoGPT-medium",
},
}
def to_var(x, requires_grad=False, volatile=False, device='cuda'):
if torch.cuda.is_available() and device == 'cuda':
x = x.cuda()
elif device != 'cuda':
x = x.to(device)
return Variable(x, requires_grad=requires_grad, volatile=volatile)
def top_k_filter(logits, k, probs=False):
"""
Masks everything but the k top entries as -infinity (1e10).
Used to mask logits such that e^-infinity -> 0 won't contribute to the
sum of the denominator.
"""
if k == 0:
return logits
else:
values = torch.topk(logits, k)[0]
batch_mins = values[:, -1].view(-1, 1).expand_as(logits)
if probs:
return torch.where(logits < batch_mins,
torch.ones_like(logits) * 0.0, logits)
return torch.where(logits < batch_mins,
torch.ones_like(logits) * -BIG_CONST,
logits)
def perturb_past(
past,
model,
last,
unpert_past =None,
unpert_logits=None,
accumulated_hidden=None,
grad_norms=None,
stepsize=0.01,
one_hot_bows_vectors=None,
classifier=None,
class_label=None,
loss_type=0,
num_iterations=3,
horizon_length=1,
window_length=0,
decay=False,
gamma=1.5,
kl_scale=0.01,
device='cuda',
verbosity_level=REGULAR
):
# Generate inital perturbed past
grad_accumulator = [
(np.zeros(p.shape).astype("float32"))
for p in past
]
if accumulated_hidden is None:
accumulated_hidden = 0
if decay:
decay_mask = torch.arange(
0.,
1.0 + SMALL_CONST,
1.0 / (window_length)
)[1:]
else:
decay_mask = 1.0
# TODO fix this comment (SUMANTH)
# Generate a mask is gradient perturbated is based on a past window
_, _, _, curr_length, _ = past[0].shape
if curr_length > window_length and window_length > 0:
ones_key_val_shape = (
tuple(past[0].shape[:-2])
+ tuple([window_length])
+ tuple(past[0].shape[-1:])
)
zeros_key_val_shape = (
tuple(past[0].shape[:-2])
+ tuple([curr_length - window_length])
+ tuple(past[0].shape[-1:])
)
ones_mask = torch.ones(ones_key_val_shape)
ones_mask = decay_mask * ones_mask.permute(0, 1, 2, 4, 3)
ones_mask = ones_mask.permute(0, 1, 2, 4, 3)
window_mask = torch.cat(
(ones_mask, torch.zeros(zeros_key_val_shape)),
dim=-2
).to(device)
else:
window_mask = torch.ones_like(past[0]).to(device)
# accumulate perturbations for num_iterations
loss_per_iter = []
new_accumulated_hidden = None
for i in range(num_iterations):
if verbosity_level >= VERBOSE:
print("Iteration ", i + 1)
curr_perturbation = [
to_var(torch.from_numpy(p_), requires_grad=True, device=device)
for p_ in grad_accumulator
]
# Compute hidden using perturbed past
perturbed_past = list(map(add, past, curr_perturbation))
_, _, _, curr_length, _ = curr_perturbation[0].shape
all_logits, _, all_hidden = model(last, past_key_values=perturbed_past)
hidden = all_hidden[-1]
new_accumulated_hidden = accumulated_hidden + torch.sum(
hidden,
dim=1
).detach()
# TODO: Check the layer-norm consistency of this with trained discriminator (Sumanth)
logits = all_logits[:, -1, :]
probs = F.softmax(logits, dim=-1)
loss = 0.0
loss_list = []
if loss_type == PPLM_BOW or loss_type == PPLM_BOW_DISCRIM:
for one_hot_bow in one_hot_bows_vectors:
bow_logits = torch.mm(probs, torch.t(one_hot_bow))
bow_loss = -torch.log(torch.sum(bow_logits))
loss += bow_loss
loss_list.append(bow_loss)
if verbosity_level >= VERY_VERBOSE:
print(" pplm_bow_loss:", loss.data.cpu().numpy())
if loss_type == PPLM_DISCRIM or loss_type == PPLM_BOW_DISCRIM:
ce_loss = torch.nn.CrossEntropyLoss()
# TODO why we need to do this assignment and not just using unpert_past? (Sumanth)
curr_unpert_past = unpert_past
curr_probs = torch.unsqueeze(probs, dim=1)
wte = model.resize_token_embeddings()
for _ in range(horizon_length):
inputs_embeds = torch.matmul(curr_probs, wte.weight.data)
_, curr_unpert_past, curr_all_hidden = model(
past_key_values=curr_unpert_past,
inputs_embeds=inputs_embeds
)
curr_hidden = curr_all_hidden[-1]
new_accumulated_hidden = new_accumulated_hidden + torch.sum(
curr_hidden, dim=1)
prediction = classifier(new_accumulated_hidden /
(curr_length + 1 + horizon_length))
label = torch.tensor(prediction.shape[0] * [class_label],
device=device,
dtype=torch.long)
discrim_loss = ce_loss(prediction, label)
if verbosity_level >= VERY_VERBOSE:
print(" pplm_discrim_loss:", discrim_loss.data.cpu().numpy())
loss += discrim_loss
loss_list.append(discrim_loss)
kl_loss = 0.0
if kl_scale > 0.0:
unpert_probs = F.softmax(unpert_logits[:, -1, :], dim=-1)
unpert_probs = (
unpert_probs + SMALL_CONST *
(unpert_probs <= SMALL_CONST).float().to(device).detach()
)
correction = SMALL_CONST * (probs <= SMALL_CONST).float().to(
device).detach()
corrected_probs = probs + correction.detach()
kl_loss = kl_scale * (
(corrected_probs * (corrected_probs / unpert_probs).log()).sum()
)
if verbosity_level >= VERY_VERBOSE:
print(' kl_loss', kl_loss.data.cpu().numpy())
loss += kl_loss
loss_per_iter.append(loss.data.cpu().numpy())
if verbosity_level >= VERBOSE:
print(' pplm_loss', (loss - kl_loss).data.cpu().numpy())
# compute gradients
loss.backward()
# calculate gradient norms
if grad_norms is not None and loss_type == PPLM_BOW:
grad_norms = [
torch.max(grad_norms[index], torch.norm(p_.grad * window_mask))
for index, p_ in enumerate(curr_perturbation)
]
else:
grad_norms = [
(torch.norm(p_.grad * window_mask) + SMALL_CONST)
for index, p_ in enumerate(curr_perturbation)
]
# normalize gradients
grad = [
-stepsize *
(p_.grad * window_mask / grad_norms[
index] ** gamma).data.cpu().numpy()
for index, p_ in enumerate(curr_perturbation)
]
# accumulate gradient
grad_accumulator = list(map(add, grad, grad_accumulator))
# reset gradients, just to make sure
for p_ in curr_perturbation:
p_.grad.data.zero_()
# removing past from the graph
new_past = []
for p_ in past:
new_past.append(p_.detach())
past = new_past
# apply the accumulated perturbations to the past
grad_accumulator = [
to_var(torch.from_numpy(p_), requires_grad=True, device=device)
for p_ in grad_accumulator
]
pert_past = list(map(add, past, grad_accumulator))
return pert_past, new_accumulated_hidden, grad_norms, loss_per_iter
def get_classifier(
name: Optional[str],
class_label: Union[str, int],
device: str,
verbosity_level: int = REGULAR,
fp: str = None,
is_deep: bool= False,
is_deeper: bool=False,
) -> Tuple[Optional[ClassificationHead], Optional[int]]:
if name is None:
return None, None
params = DISCRIMINATOR_MODELS_PARAMS[name]
classifier = ClassificationHead(
class_size=params['class_size'],
embed_size=params['embed_size'],
is_deep=is_deep,
is_deeper=is_deeper
).to(device)
if "url" in params:
resolved_archive_file = cached_path(params["url"])
elif "path" in params:
resolved_archive_file = params["path"]
elif fp != None:
resolved_archive_file = fp
else:
raise ValueError("Either url or path have to be specified "
"in the discriminator model parameters")
classifier.load_state_dict(
torch.load(resolved_archive_file, map_location=device))
classifier.eval()
if isinstance(class_label, str):
if class_label in params["class_vocab"]:
label_id = params["class_vocab"][class_label]
else:
label_id = params["default_class"]
if verbosity_level >= REGULAR:
print("class_label {} not in class_vocab".format(class_label))
print("available values are: {}".format(params["class_vocab"]))
print("using default class {}".format(label_id))
elif isinstance(class_label, int):
if class_label in set(params["class_vocab"].values()):
label_id = class_label
else:
label_id = params["default_class"]
if verbosity_level >= REGULAR:
print("class_label {} not in class_vocab".format(class_label))
print("available values are: {}".format(params["class_vocab"]))
print("using default class {}".format(label_id))
else:
label_id = params["default_class"]
return classifier, label_id
def get_bag_of_words_indices(bag_of_words_ids_or_paths: List[str], tokenizer) -> \
List[List[List[int]]]:
bow_indices = []
for id_or_path in bag_of_words_ids_or_paths:
if id_or_path in BAG_OF_WORDS_ARCHIVE_MAP:
filepath = cached_path(BAG_OF_WORDS_ARCHIVE_MAP[id_or_path])
else:
filepath = id_or_path
with open(filepath, "r") as f:
words = f.read().strip().split("\n")
bow_indices.append(
[tokenizer.encode(word.strip(),
add_prefix_space=True,
add_special_tokens=False)
for word in words])
return bow_indices
def build_bows_one_hot_vectors(bow_indices, tokenizer, device='cuda'):
if bow_indices is None:
return None
one_hot_bows_vectors = []
for single_bow in bow_indices:
single_bow = list(filter(lambda x: len(x) <= 1, single_bow))
single_bow = torch.tensor(single_bow).to(device)
num_words = single_bow.shape[0]
one_hot_bow = torch.zeros(num_words, tokenizer.vocab_size).to(device)
one_hot_bow.scatter_(1, single_bow, 1)
one_hot_bows_vectors.append(one_hot_bow)
return one_hot_bows_vectors
def full_text_generation(
model,
tokenizer,
context=None,
num_samples=1,
device="cuda",
bag_of_words=None,
discrim=None,
class_label=None,
length=100,
stepsize=0.02,
temperature=1.0,
top_k=10,
sample=True,
num_iterations=3,
grad_length=10000,
horizon_length=1,
window_length=0,
decay=False,
gamma=1.5,
gm_scale=0.9,
kl_scale=0.01,
verbosity_level=REGULAR,
fp=None,
is_deep=False,
is_deeper=False,
stop_eot=False,
**kwargs
):
classifier, class_id = get_classifier(
discrim,
class_label,
device,
REGULAR,
fp,
is_deep,
is_deeper
)
bow_indices = []
if bag_of_words:
bow_indices = get_bag_of_words_indices(bag_of_words.split(";"),
tokenizer)
if bag_of_words and classifier:
loss_type = PPLM_BOW_DISCRIM
if verbosity_level >= REGULAR:
print("Both PPLM-BoW and PPLM-Discrim are on. "
"This is not optimized.")
elif bag_of_words:
loss_type = PPLM_BOW
if verbosity_level >= REGULAR:
print("Using PPLM-BoW")
elif classifier is not None:
loss_type = PPLM_DISCRIM
if verbosity_level >= REGULAR:
print("Using PPLM-Discrim")
else:
raise Exception("Specify either a bag of words or a discriminator")
unpert_gen_tok_text, _, _, _ = generate_text_pplm(
model=model,
tokenizer=tokenizer,
context=context,
device=device,
length=length,
sample=sample,
perturb=False,
verbosity_level=verbosity_level,
stop_eot=stop_eot
)
if device == 'cuda':
torch.cuda.empty_cache()
pert_gen_tok_texts = []
discrim_losses = []
losses_in_time = []
perplexities = []
for i in range(num_samples):
pert_gen_tok_text, discrim_loss, loss_in_time, perplexity = generate_text_pplm(
model=model,
tokenizer=tokenizer,
context=context,
device=device,
perturb=True,
bow_indices=bow_indices,
classifier=classifier,
class_label=class_id,
loss_type=loss_type,
length=length,
stepsize=stepsize,
temperature=temperature,
top_k=top_k,
sample=sample,
num_iterations=num_iterations,
grad_length=grad_length,
horizon_length=horizon_length,
window_length=window_length,
decay=decay,
gamma=gamma,
gm_scale=gm_scale,
kl_scale=kl_scale,
verbosity_level=verbosity_level,
stop_eot=stop_eot
)
pert_gen_tok_texts.append(pert_gen_tok_text)
if classifier is not None:
discrim_losses.append(discrim_loss.data.cpu().numpy())
losses_in_time.append(loss_in_time)
perplexities.append(perplexity)
if device == 'cuda':
torch.cuda.empty_cache()
return unpert_gen_tok_text, pert_gen_tok_texts, discrim_losses, losses_in_time, perplexities
def generate_text_pplm(
model,
tokenizer,
context=None,
past=None,
device="cuda",
perturb=True,
bow_indices=None,
classifier=None,
class_label=None,
loss_type=0,
length=100,
stepsize=0.02,
temperature=1.0,
top_k=10,
sample=True,
num_iterations=3,
grad_length=10000,
horizon_length=1,
window_length=0,
decay=False,
gamma=1.5,
gm_scale=0.9,
kl_scale=0.01,
verbosity_level=REGULAR,
stop_eot=False
):
output_so_far = None
if context:
context_t = torch.tensor(context, device=device, dtype=torch.long)
while len(context_t.shape) < 2:
context_t = context_t.unsqueeze(0)
output_so_far = context_t
# collect one hot vectors for bags of words
one_hot_bows_vectors = build_bows_one_hot_vectors(bow_indices, tokenizer,
device)
grad_norms = None
last = None
unpert_discrim_loss = 0
loss_in_time = []
if verbosity_level >= VERBOSE:
range_func = trange(length, ascii=True)
else:
range_func = range(length)
pert_total_prob = 1
pert_times = 0
last_reps = torch.ones(50257)
last_reps = last_reps.to(device)
for i in range_func:
# Get past/probs for current output, except for last word
# Note that GPT takes 2 inputs: past + current_token
# run model forward to obtain unperturbed
if past is None and output_so_far is not None:
last = output_so_far[:, -1:]
if output_so_far.shape[1] > 1:
_, past, _ = model(output_so_far[:, :-1])
unpert_logits, unpert_past, unpert_all_hidden = model(output_so_far)
unpert_last_hidden = unpert_all_hidden[-1]
# check if we are abowe grad max length
if i >= grad_length:
current_stepsize = stepsize * 0
else:
current_stepsize = stepsize
# modify the past if necessary
if not perturb or num_iterations == 0:
pert_past = past
else:
accumulated_hidden = unpert_last_hidden[:, :-1, :]
accumulated_hidden = torch.sum(accumulated_hidden, dim=1)
if past is not None:
pert_past, _, grad_norms, loss_this_iter = perturb_past(
past,
model,
last,
unpert_past=unpert_past,
unpert_logits=unpert_logits,
accumulated_hidden=accumulated_hidden,
grad_norms=grad_norms,
stepsize=current_stepsize,
one_hot_bows_vectors=one_hot_bows_vectors,
classifier=classifier,
class_label=class_label,
loss_type=loss_type,
num_iterations=num_iterations,
horizon_length=horizon_length,
window_length=window_length,
decay=decay,
gamma=gamma,
kl_scale=kl_scale,
device=device,
verbosity_level=verbosity_level
)
loss_in_time.append(loss_this_iter)
else:
pert_past = past
pert_logits, past, pert_all_hidden = model(last, past_key_values=pert_past)
pert_logits = pert_logits[:, -1, :] / temperature # + SMALL_CONST
pert_probs = F.softmax(pert_logits, dim=-1)
if classifier is not None:
ce_loss = torch.nn.CrossEntropyLoss()
prediction = classifier(torch.mean(unpert_last_hidden, dim=1))
label = torch.tensor([class_label], device=device,
dtype=torch.long)
unpert_discrim_loss = ce_loss(prediction, label)
if verbosity_level >= VERBOSE:
print(
"unperturbed discrim loss",
unpert_discrim_loss.data.cpu().numpy()
)
else:
unpert_discrim_loss = 0
# Fuse the modified model and original model
if perturb:
unpert_probs = F.softmax(unpert_logits[:, -1, :], dim=-1)
pert_probs = ((pert_probs ** gm_scale) * (
unpert_probs ** (1 - gm_scale))) # + SMALL_CONST
if i < 2:
pert_probs = top_k_filter(pert_probs, k=max(2, top_k), probs=True) # + SMALL_CONST
if i == 0: pert_probs[0][50256] = 0
if i == 1:
tmp = pert_probs[0][50256]
pert_probs[0][50256] = 0
pert_probs[0][50256] = min(torch.max(pert_probs[0]), tmp)
else:
pert_probs = top_k_filter(pert_probs, k=top_k, probs=True) # + SMALL_CONST
pert_probs = torch.div(pert_probs, last_reps)
# rescale
if torch.sum(pert_probs) <= 1:
pert_probs = pert_probs / torch.sum(pert_probs)
else:
pert_logits = top_k_filter(pert_logits, k=top_k) # + SMALL_CONST
pert_probs = F.softmax(pert_logits, dim=-1)
# sample or greedy
if sample:
last = torch.multinomial(pert_probs, num_samples=1)
pert_total_prob = pert_total_prob * pert_probs[0][last[0][0]]
else:
_, last = torch.topk(pert_probs, k=1, dim=-1)
last_reps[last[0][0]] = last_reps[last[0][0]] * 8
# update context/output_so_far appending the new token
output_so_far = (
last if output_so_far is None
else torch.cat((output_so_far, last), dim=1)
)
if verbosity_level >= REGULAR:
print(tokenizer.decode(output_so_far.tolist()[0]))
pert_times += 1
if last[0][0] == 50256 and stop_eot:
break
perplexity = (1/pert_total_prob)**(1/pert_times)
return output_so_far, unpert_discrim_loss, loss_in_time, perplexity
def set_generic_model_params(discrim_weights, discrim_meta):
if discrim_weights is None:
raise ValueError('When using a generic discriminator, '
'discrim_weights need to be specified')
if discrim_meta is None:
raise ValueError('When using a generic discriminator, '
'discrim_meta need to be specified')
with open(discrim_meta, 'r') as discrim_meta_file:
meta = json.load(discrim_meta_file)
meta['path'] = discrim_weights
DISCRIMINATOR_MODELS_PARAMS['generic'] = meta
pretrained_model="microsoft/DialoGPT-large"
cond_text=""
uncond=False
num_samples=1
bag_of_words=None
discrim="3_PerSoothe_lrg"
discrim_weights=None
discrim_meta=None
class_label=0
length=100
stepsize=0.32
temperature=1.3
top_k=2
sample=True
num_iterations=10
grad_length=10000
horizon_length=1
window_length=0
decay=False
gamma=1.0
gm_scale=0.95
kl_scale=0.01
seed=0
no_cuda=False
colorama=False
verbosity="quiet"
fp="./paper_code/discrim_models/persoothe_classifier.pt" #"/content/drive/Shareddrives/COS_IW04_ZL/COSIW04/Discriminators/3_class_lrggpt_fit_deeper_2/3_PerSoothe_classifier_head_epoch_8.pt"
model_fp="./paper_code/discrim_models/persoothe_encoder.pt" #None
calc_perplexity=False
is_deep=False
is_deeper=True
stop_eot=True
# set Random seed
torch.manual_seed(seed)
np.random.seed(seed)
# set verbosiry
verbosity_level = VERBOSITY_LEVELS.get(verbosity.lower(), REGULAR)
# set the device
device = "cuda" if torch.cuda.is_available() and not no_cuda else "cpu"
if discrim == 'generic':
set_generic_model_params(discrim_weights, discrim_meta)
if discrim is not None:
discriminator_pretrained_model = DISCRIMINATOR_MODELS_PARAMS[discrim][
"pretrained_model"
]
if pretrained_model != discriminator_pretrained_model:
pretrained_model = discriminator_pretrained_model
if verbosity_level >= REGULAR:
print("discrim = {}, pretrained_model set "
"to discriminator's = {}".format(discrim, pretrained_model))
# load pretrained model
model = GPT2LMHeadModel.from_pretrained(
pretrained_model,
output_hidden_states=True
)
if model_fp != None and model_fp != "":
model.load_state_dict(torch.load(model_fp, map_location=device))
model.to(device)
model.eval()
# load tokenizer
tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model)
# Freeze GPT-2 weights
for param in model.parameters():
param.requires_grad = False
starters = ["How are you feeling and why?", "Tell me about your day", "What would you like to talk about?"]
eot_token = "<|endoftext|>"
def get_reply(response, username = None, histories = {}, in_stepsize = 0.32, in_horizon_length = 1, in_num_iterations = 10, in_top_k = 2):
if username == None or username == "": return "<div class='chatbot'>Enter a username</div>", histories
stepsize = in_stepsize
horizon_length = int(in_horizon_length)
num_iterations = int(in_num_iterations)
top_k = int(in_top_k)
if response.endswith(("bye", "Bye", "bye.", "Bye.", "bye!", "Bye!","Hello", "Hi", "hello")):
starter = choice(starters)
histories[username] = starter+"<|endoftext|>"
html = "<div class='chatbot'> Chatbot restarted"
html += "<div class='msg user'>"+starter+"</div>"
html += "</div>"
return html, histories
history = histories.get(username, None)
convo_hist = (history if history != None else "How are you?<|endoftext|>") + response + eot_token
# figure out conditioning text
tokenized_cond_text = tokenizer.encode(
eot_token + convo_hist,
add_special_tokens=False
)
# generate perturbed texts
# full_text_generation returns:
# unpert_gen_tok_text, pert_gen_tok_texts, discrim_losses, losses_in_time
_, pert_gen_tok_texts, _, _, _ = full_text_generation(
model=model,
tokenizer=tokenizer,
context=tokenized_cond_text,
device=device,
num_samples=1,
bag_of_words=bag_of_words,
discrim=discrim,
class_label=class_label,
length=length,
stepsize=stepsize,
temperature=temperature,
top_k=top_k,
sample=sample,
num_iterations=num_iterations,
grad_length=grad_length,
horizon_length=horizon_length,
window_length=window_length,
decay=decay,
gamma=gamma,
gm_scale=gm_scale,
kl_scale=kl_scale,
verbosity_level=verbosity_level,
fp=fp,
is_deep=is_deep,
is_deeper=is_deeper,
stop_eot=stop_eot
)
# iterate through the perturbed texts
for i, pert_gen_tok_text in enumerate(pert_gen_tok_texts):
try:
pert_gen_text = tokenizer.decode(pert_gen_tok_text.tolist()[0])
convo_hist_split = pert_gen_text.split(eot_token)
html = "<div class='chatbot'>"
for m, msg in enumerate(convo_hist_split[1:-1]):
cls = "user" if m%2 == 0 else "bot"
html += "<div class='msg {}'> {}</div>".format(cls, msg)
html += "</div>"
if len(convo_hist_split) > 4: convo_hist_split = convo_hist_split[-4:]
convo_hist = eot_token.join(convo_hist_split)
except:
starter = choice(starters)
histories[username] = starter+"<|endoftext|>"
html = "<div class='chatbot'> Chatbot restarted"
html += "<div class='msg user'>"+starter+"</div>"
html += "</div>"
return html, histories
histories[username] = convo_hist
return html, histories
css = """
.chatbox {display:flex;flex-direction:column}
.msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%}
.msg.user {background-color:cornflowerblue;color:white}
.msg.bot {background-color:lightgray;align-self:self-end}
.footer {display:none !important}
"""
gr.Interface(fn=get_reply,
theme="default",
inputs=[gr.inputs.Textbox(placeholder="How are you?"),
gr.inputs.Textbox(label="Username"),
"state"],
outputs=["html", "state"],
css=css).launch(debug=True, enable_queue=True, share=True)
|