File size: 7,012 Bytes
ef07385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8f1bcd
ef07385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
""" Simple Chatbot
@author: Nigel Gebodh
@email: [email protected]
"""

import streamlit as st
from openai import OpenAI
import os
import sys
from dotenv import load_dotenv, dotenv_values
load_dotenv()

# initialize the client
client = OpenAI(
  base_url="https://api-inference.huggingface.co/v1",
  api_key = os.environ.get('HUGGINGFACEHUB_API_TOKEN')#"hf_xxx" # Replace with your token
) 

#Create supported models
model_links ={
    "Mistral":"mistralai/Mistral-7B-Instruct-v0.2",
    "Gemma-7B":"google/gemma-7b-it",
    "Zephyr-7B-β":"HuggingFaceH4/zephyr-7b-beta",
    "Mesolitica":"mesolitica/malaysian-mistral-3B-4096",
    
}

#Pull info about the model to display
model_info ={
    "Mistral":
        {'description':"""The Mistral model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
        \nIt was created by the [**Mistral AI**](https://mistral.ai/news/announcing-mistral-7b/) team as has over  **7 billion parameters.** \n""",
        'logo':'https://mistral.ai/images/logo_hubc88c4ece131b91c7cb753f40e9e1cc5_2589_256x0_resize_q97_h2_lanczos_3.webp'},
    "Gemma-7B":        
        {'description':"""The Gemma model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
            \nIt was created by the [**Google's AI Team**](https://blog.google/technology/developers/gemma-open-models/) team as has over  **7 billion parameters.** \n""",
        'logo':'https://pbs.twimg.com/media/GG3sJg7X0AEaNIq.jpg'},
    "Gemma-2B":        
        {'description':"""The Gemma model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
        \nIt was created by the [**Google's AI Team**](https://blog.google/technology/developers/gemma-open-models/) team as has over  **2 billion parameters.** \n""",
        'logo':'https://pbs.twimg.com/media/GG3sJg7X0AEaNIq.jpg'},
    "Llama-2":        
        {'description':"""Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters.\n \
        \nFrom Huggingface: \n\
        [Llama-2](https://huggingface.co/meta-llama/Llama-2-7b)\
        is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety. \n""",},
    "Command-R":        
        {'description':"""Command-R is a **Large Language Model (LLM)** with open weights optimized for a variety of use cases including reasoning, summarization, and question answering. Command-R has the capability for multilingual generation evaluated in 10 languages and highly performant RAG capabilities.\n \
        \nFrom Huggingface: \n\
        [Command-R](https://huggingface.co/CohereForAI/c4ai-command-r-v01)\
        is a research release of a 35 billion parameter highly performant generative model. \n""",},
    "Zephyr-7B-β":        
        {'description':"""The Zephyr model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
        \nFrom Huggingface: \n\
        Zephyr is a series of language models that are trained to act as helpful assistants. \
        [Zephyr-7B-β](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)\
        is the second model in the series, and is a fine-tuned version of mistralai/Mistral-7B-v0.1 \
        that was trained on on a mix of publicly available, synthetic datasets using Direct Preference Optimization (DPO)\n""",
        'logo':'https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png'},
    "Mesolitica":        
        {'description':"""GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way.\n \
        \nFrom Huggingface: \n\
        This is the smallest version of [GPT-2](https://huggingface.co/openai-community/gpt2)\
        with 124M parameters. \n""",},
}

def reset_conversation():
    '''
    Resets Conversation
    '''
    st.session_state.conversation = []
    st.session_state.messages = []
    return None
    
# Define the available models
models =[key for key in model_links.keys()]

# Create the sidebar with the dropdown for model selection
selected_model = st.sidebar.selectbox("Select Model", models)

#Create a temperature slider
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5))

#Add reset button to clear conversation
st.sidebar.button('Reset Chat', on_click=reset_conversation) #Reset button

# Create model description
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown(model_info[selected_model]['description'])
#st.sidebar.image(model_info[selected_model]['logo'])
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
#st.sidebar.markdown("\nLearn how to build this chatbot [here](https://ngebodh.github.io/projects/2024-03-05/).")
#st.sidebar.markdown("\nRun into issues? Try the [back-up](https://huggingface.co/spaces/ngebodh/SimpleChatbot-Backup).")

if "prev_option" not in st.session_state:
    st.session_state.prev_option = selected_model

if st.session_state.prev_option != selected_model:
    st.session_state.messages = []
    # st.write(f"Changed to {selected_model}")
    st.session_state.prev_option = selected_model
    reset_conversation()

#Pull in the model we want to use
repo_id = model_links[selected_model]

st.subheader(f'AI - {selected_model}')
# st.title(f'ChatBot Using {selected_model}')

# Set a default model
if selected_model not in st.session_state:
    st.session_state[selected_model] = model_links[selected_model] 

# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []


# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# Accept user input
if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"):
    # Display user message in chat message container
    with st.chat_message("user"):
        st.markdown(prompt)
    # Add user message to chat history
    st.session_state.messages.append({"role": "user", "content": prompt})

    # Display assistant response in chat message container
    with st.chat_message("assistant"):
        stream = client.chat.completions.create(
            model=model_links[selected_model],
            messages=[
                {"role": m["role"], "content": m["content"]}
                for m in st.session_state.messages
            ],
            temperature=temp_values,#0.5,
            stream=True,
            max_tokens=3000,
        )
        response = st.write_stream(stream)
    st.session_state.messages.append({"role": "assistant", "content": response})