Spaces:
Sleeping
Sleeping
File size: 995 Bytes
2cb1421 2f5f23f 9a23b5c 79dc319 9a23b5c 79dc319 f838a8b f8b3be6 2cb1421 f8b3be6 2cb1421 2f5f23f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import pickle
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import confusion_matrix
import torch
def extract_hidden_state(input_text, tokenizer, language_model):
tokens = tokenizer(input_text, padding=True, return_tensors="pt")
with torch.no_grad():
outputs = language_model(**tokens)
return outputs.last_hidden_state[:,0].numpy()
def serialize_data(data, output_path:str):
with open(output_path, "wb") as f:
pickle.dump(data, f)
def load_data(input_path:str):
with open(input_path, "rb") as f:
return pickle.load(f)
def plot_confusion_matrix(y_true, y_preds):
labels = sorted(set(y_true.tolist() + y_preds.tolist()))
cm = confusion_matrix(y_true, y_preds)
plt.figure(figsize=(12, 10))
sns.heatmap(cm, annot=True, cmap="Blues",
xticklabels=labels, yticklabels=labels)
plt.xlabel('Predicted Label')
plt.ylabel('True Label')
plt.title('Confusion Matrix')
plt.show() |