zaidmehdi's picture
adding examples
47e7f1f
raw
history blame
2.12 kB
import os
import pickle
import gradio as gr
from transformers import AutoModel, AutoTokenizer
from .utils import extract_hidden_state
# Load model
models_dir = os.path.join(os.path.dirname(__file__), '..', 'models')
model_file = os.path.join(models_dir, 'logistic_regression.pkl')
if os.path.exists(model_file):
with open(model_file, "rb") as f:
model = pickle.load(f)
else:
print(f"Error: {model_file} not found.")
# Load html
html_dir = os.path.join(os.path.dirname(__file__), "templates")
index_html_path = os.path.join(html_dir, "index.html")
if os.path.exists(index_html_path):
with open(index_html_path, "r") as html_file:
index_html = html_file.read()
else:
print(f"Error: {index_html_path} not found.")
# Load pre-trained model
model_name = "moussaKam/AraBART"
tokenizer = AutoTokenizer.from_pretrained(model_name)
language_model = AutoModel.from_pretrained(model_name)
def classify_arabic_dialect(text):
text_embeddings = extract_hidden_state(text, tokenizer, language_model)
probabilities = model.predict_proba(text_embeddings)[0]
labels = model.classes_
predictions = {labels[i]: probabilities[i] for i in range(len(probabilities))}
return predictions
with gr.Blocks() as demo:
gr.HTML(index_html)
input_text = gr.Textbox(label="Your Arabic Text")
submit_btn = gr.Button("Submit")
predictions = gr.Label(num_top_classes=3)
submit_btn.click(
fn=classify_arabic_dialect,
inputs=input_text,
outputs=predictions)
gr.Markdown("## Text Examples")
examples = gr.Examples(
examples=[
"واش نتا خدام ولا لا",
"بصح راك فاهم لازم الزيت",
"حضرتك بروح زي كدا؟ على طول النهار ده",
],
inputs=input_text,
)
gr.HTML("""
<p style="text-align: center;font-size: large;">
Checkout the <a href="https://github.com/zaidmehdi/arabic-dialect-classifier">Github Repo</a>
</p>
""")
if __name__ == "__main__":
demo.launch()