Spaces:
Sleeping
Sleeping
import os | |
import pickle | |
import gradio as gr | |
from transformers import AutoModel, AutoTokenizer | |
from .utils import extract_hidden_state | |
# Load model | |
models_dir = os.path.join(os.path.dirname(__file__), '..', 'models') | |
model_file = os.path.join(models_dir, 'logistic_regression.pkl') | |
if os.path.exists(model_file): | |
with open(model_file, "rb") as f: | |
model = pickle.load(f) | |
else: | |
print(f"Error: {model_file} not found.") | |
# Load html | |
html_dir = os.path.join(os.path.dirname(__file__), "templates") | |
index_html_path = os.path.join(html_dir, "index.html") | |
if os.path.exists(index_html_path): | |
with open(index_html_path, "r") as html_file: | |
index_html = html_file.read() | |
else: | |
print(f"Error: {index_html_path} not found.") | |
# Load pre-trained model | |
model_name = "moussaKam/AraBART" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
language_model = AutoModel.from_pretrained(model_name) | |
def classify_arabic_dialect(text): | |
text_embeddings = extract_hidden_state(text, tokenizer, language_model) | |
probabilities = model.predict_proba(text_embeddings)[0] | |
labels = model.classes_ | |
predictions = {labels[i]: probabilities[i] for i in range(len(probabilities))} | |
return predictions | |
with gr.Blocks() as demo: | |
gr.HTML(index_html) | |
input_text = gr.Textbox(label="Your Arabic Text") | |
submit_btn = gr.Button("Submit") | |
predictions = gr.Label(num_top_classes=3) | |
submit_btn.click( | |
fn=classify_arabic_dialect, | |
inputs=input_text, | |
outputs=predictions) | |
gr.Markdown("## Text Examples") | |
examples = gr.Examples( | |
examples=[ | |
"واش نتا خدام ولا لا", | |
"بصح راك فاهم لازم الزيت", | |
"حضرتك بروح زي كدا؟ على طول النهار ده", | |
], | |
inputs=input_text, | |
) | |
gr.HTML(""" | |
<p style="text-align: center;font-size: large;"> | |
Checkout the <a href="https://github.com/zaidmehdi/arabic-dialect-classifier">Github Repo</a> | |
</p> | |
""") | |
if __name__ == "__main__": | |
demo.launch() |