import os import pickle import gradio as gr from transformers import AutoModel, AutoTokenizer from .utils import extract_hidden_state # Load model models_dir = os.path.join(os.path.dirname(__file__), '..', 'models') model_file = os.path.join(models_dir, 'logistic_regression.pkl') if os.path.exists(model_file): with open(model_file, "rb") as f: model = pickle.load(f) else: print(f"Error: {model_file} not found.") # Load html html_dir = os.path.join(os.path.dirname(__file__), "templates") index_html_path = os.path.join(html_dir, "index.html") if os.path.exists(index_html_path): with open(index_html_path, "r") as html_file: index_html = html_file.read() else: print(f"Error: {index_html_path} not found.") # Load pre-trained model model_name = "moussaKam/AraBART" tokenizer = AutoTokenizer.from_pretrained(model_name) language_model = AutoModel.from_pretrained(model_name) def classify_arabic_dialect(text): text_embeddings = extract_hidden_state(text, tokenizer, language_model) probabilities = model.predict_proba(text_embeddings)[0] labels = model.classes_ predictions = {labels[i]: probabilities[i] for i in range(len(probabilities))} return predictions with gr.Blocks() as demo: gr.HTML(index_html) input_text = gr.Textbox(label="Your Arabic Text") submit_btn = gr.Button("Submit") predictions = gr.Label(num_top_classes=3) submit_btn.click( fn=classify_arabic_dialect, inputs=input_text, outputs=predictions) gr.Markdown("## Text Examples") examples = gr.Examples( examples=[ "واش نتا خدام ولا لا", "بصح راك فاهم لازم الزيت", "حضرتك بروح زي كدا؟ على طول النهار ده", ], inputs=input_text, ) gr.HTML("""
Checkout the Github Repo
""") if __name__ == "__main__": demo.launch()