Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 3,070 Bytes
13fb76e be82820 13fb76e 58df7f1 13fb76e 58df7f1 49a1dd4 e3e1dc8 58df7f1 e3e1dc8 13fb76e e3e1dc8 f5aa6c7 13fb76e f5aa6c7 13fb76e 58df7f1 e3e1dc8 58df7f1 e3e1dc8 58df7f1 13fb76e 58df7f1 13fb76e 58df7f1 13fb76e 58df7f1 13fb76e 58df7f1 13fb76e 58df7f1 e3e1dc8 13fb76e 58df7f1 49a1dd4 e3e1dc8 58df7f1 13fb76e 58df7f1 13fb76e 58df7f1 13fb76e e3e1dc8 58df7f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
"""Server that will listen for GET and POST requests from the client."""
import time
from typing import List
from fastapi import FastAPI, File, Form, UploadFile
from fastapi.responses import JSONResponse, Response
from utils import DEPLOYMENT_DIR, SERVER_DIR # pylint: disable=no-name-in-module)
from concrete.ml.deployment import FHEModelServer
# Initialize an instance of FastAPI
app = FastAPI()
# Define the default route
@app.get("/")
def root():
"""
Root endpoint of the health prediction API.
Returns:
dict: The welcome message.
"""
return {"message": "Welcome to your disease prediction with FHE!"}
@app.post("/send_input")
def send_input(
user_id: str = Form(),
files: List[UploadFile] = File(),
):
"""Send the inputs to the server."""
print("\nSend the data to the server ............\n")
# Receive the Client's files (Evaluation key + Encrypted symptoms)
evaluation_key_path = SERVER_DIR / f"{user_id}_valuation_key"
encrypted_input_path = SERVER_DIR / f"{user_id}_encrypted_input"
# Save the files using the above paths
with encrypted_input_path.open("wb") as encrypted_input, evaluation_key_path.open(
"wb"
) as evaluation_key:
encrypted_input.write(files[0].file.read())
evaluation_key.write(files[1].file.read())
@app.post("/run_fhe")
def run_fhe(
user_id: str = Form(),
):
"""Inference in FHE."""
print("\nRun in FHE in the server ............\n")
evaluation_key_path = SERVER_DIR / f"{user_id}_valuation_key"
encrypted_input_path = SERVER_DIR / f"{user_id}_encrypted_input"
# Read the files (Evaluation key + Encrypted symptoms) using the above paths
with encrypted_input_path.open("rb") as encrypted_output_file, evaluation_key_path.open(
"rb"
) as evaluation_key_file:
encrypted_output = encrypted_output_file.read()
evaluation_key = evaluation_key_file.read()
# Load the FHE server and the model
fhe_server = FHEModelServer(DEPLOYMENT_DIR)
# Run the FHE execution
start = time.time()
encrypted_output = fhe_server.run(encrypted_output, evaluation_key)
assert isinstance(encrypted_output, bytes)
fhe_execution_time = round(time.time() - start, 2)
# Retrieve the encrypted output path
encrypted_output_path = SERVER_DIR / f"{user_id}_encrypted_output"
# Write the file using the above path
with encrypted_output_path.open("wb") as f:
f.write(encrypted_output)
return JSONResponse(content=fhe_execution_time)
@app.post("/get_output")
def get_output(user_id: str = Form()):
"""Retrieve the encrypted output from the server."""
print("\nGet the output from the server ............\n")
# Path where the encrypted output is saved
encrypted_output_path = SERVER_DIR / f"{user_id}_encrypted_output"
# Read the file using the above path
with encrypted_output_path.open("rb") as f:
encrypted_output = f.read()
time.sleep(1)
# Send the encrypted output
return Response(encrypted_output)
|