Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
"""Generating deployment files.""" | |
import shutil | |
from pathlib import Path | |
import pandas as pd | |
from concrete.ml.sklearn import LogisticRegression as ConcreteLogisticRegression | |
from concrete.ml.deployment import FHEModelDev | |
# Data files location | |
TRAINING_FILE_NAME = "./data/Training_preprocessed.csv" | |
TESTING_FILE_NAME = "./data/Testing_preprocessed.csv" | |
# Load data | |
df_train = pd.read_csv(TRAINING_FILE_NAME) | |
df_test = pd.read_csv(TESTING_FILE_NAME) | |
# Split the data into X_train, y_train, X_test_, y_test sets | |
TARGET_COLUMN = ["prognosis_encoded", "prognosis"] | |
y_train = df_train[TARGET_COLUMN[0]].values.flatten() | |
y_test = df_test[TARGET_COLUMN[0]].values.flatten() | |
X_train = df_train.drop(TARGET_COLUMN, axis=1) | |
X_test = df_test.drop(TARGET_COLUMN, axis=1) | |
# Concrete ML model | |
# Models parameters | |
optimal_param = {"C": 0.9, "n_bits": 13, "solver": "sag", "multi_class": "auto"} | |
clf = ConcreteLogisticRegression(**optimal_param) | |
# Fit the model | |
clf.fit(X_train, y_train) | |
# Compile the model | |
fhe_circuit = clf.compile(X_train) | |
fhe_circuit.client.keygen(force=False) | |
path_to_model = Path("./deployment_files/").resolve() | |
if path_to_model.exists(): | |
shutil.rmtree(path_to_model) | |
dev = FHEModelDev(path_to_model, clf) | |
dev.save(via_mlir=True) |