Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
chore: version 4
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import subprocess
|
2 |
import time
|
3 |
-
from
|
4 |
-
from typing import Dict, List, Tuple, Union
|
5 |
|
6 |
import gradio as gr
|
7 |
import numpy as np
|
@@ -28,15 +27,59 @@ from concrete.ml.deployment import FHEModelClient
|
|
28 |
subprocess.Popen(["uvicorn", "server:app"], cwd=CURRENT_DIR)
|
29 |
time.sleep(3)
|
30 |
|
31 |
-
# pylint: disable=c-extension-no-member
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
return inputs is None or (inputs is not None and len(inputs) < 1)
|
34 |
|
35 |
|
36 |
-
def
|
|
|
|
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
for pretty_symptom in checkbox_symptoms:
|
41 |
original_symptom = "_".join((pretty_symptom.lower().split(" ")))
|
42 |
if original_symptom not in symptoms_vector.keys():
|
@@ -53,20 +96,16 @@ def get_user_symptoms_from_checkboxgroup(checkbox_symptoms) -> np.array:
|
|
53 |
return user_symptoms_vect
|
54 |
|
55 |
|
56 |
-
def
|
57 |
-
|
58 |
-
|
59 |
-
df_filtred = df[df[TARGET_COLUMNS[1]] == default_disease]
|
60 |
-
symptoms = pretty_print(df_filtred.columns[df_filtred.eq(1).any()].to_list())
|
61 |
-
|
62 |
-
if any(lst for lst in checkbox_symptoms if lst):
|
63 |
-
for sublist in checkbox_symptoms:
|
64 |
-
symptoms.extend(sublist)
|
65 |
-
|
66 |
-
return {box: symptoms for box in check_boxes}
|
67 |
|
|
|
|
|
68 |
|
69 |
-
|
|
|
|
|
70 |
if not any(lst for lst in checked_symptoms if lst):
|
71 |
return {
|
72 |
error_box1: gr.update(
|
@@ -118,7 +157,7 @@ def key_gen_fn(user_symptoms: List[str]) -> Dict:
|
|
118 |
with evaluation_key_path.open("wb") as f:
|
119 |
f.write(serialized_evaluation_keys)
|
120 |
|
121 |
-
serialized_evaluation_keys_shorten_hex = serialized_evaluation_keys.hex()[:INPUT_BROWSER_LIMIT]
|
122 |
|
123 |
return {
|
124 |
error_box2: gr.update(visible=False),
|
@@ -128,7 +167,14 @@ def key_gen_fn(user_symptoms: List[str]) -> Dict:
|
|
128 |
}
|
129 |
|
130 |
|
131 |
-
def encrypt_fn(user_symptoms, user_id):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
if is_nan(user_id) or is_nan(user_symptoms):
|
134 |
print("Error in encryption step: Provide your symptoms and generate the evaluation keys.")
|
@@ -164,7 +210,7 @@ def encrypt_fn(user_symptoms, user_id):
|
|
164 |
}
|
165 |
|
166 |
|
167 |
-
def send_input_fn(user_id, user_symptoms):
|
168 |
"""Send the encrypted data and the evaluation key to the server.
|
169 |
|
170 |
Args:
|
@@ -215,7 +261,7 @@ def send_input_fn(user_id, user_symptoms):
|
|
215 |
("files", open(evaluation_key_path, "rb")),
|
216 |
]
|
217 |
|
218 |
-
# Send the encrypted input
|
219 |
url = SERVER_URL + "send_input"
|
220 |
with requests.post(
|
221 |
url=url,
|
@@ -226,12 +272,11 @@ def send_input_fn(user_id, user_symptoms):
|
|
226 |
return {error_box4: gr.update(visible=False), srv_resp_send_data_box: "Data sent"}
|
227 |
|
228 |
|
229 |
-
def run_fhe_fn(user_id):
|
230 |
-
"""Send the encrypted input
|
231 |
|
232 |
Args:
|
233 |
user_id (int): The current user's ID.
|
234 |
-
filter_name (str): The current filter to consider.
|
235 |
"""
|
236 |
if is_nan(user_id): # or is_nan(user_symptoms):
|
237 |
return {
|
@@ -246,7 +291,7 @@ def run_fhe_fn(user_id):
|
|
246 |
"user_id": user_id,
|
247 |
}
|
248 |
|
249 |
-
# Trigger the FHE execution on the encrypted
|
250 |
|
251 |
url = SERVER_URL + "run_fhe"
|
252 |
|
@@ -268,7 +313,14 @@ def run_fhe_fn(user_id):
|
|
268 |
}
|
269 |
|
270 |
|
271 |
-
def get_output_fn(user_id, user_symptoms):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
if is_nan(user_id) or is_nan(user_symptoms):
|
273 |
return {
|
274 |
error_box6: gr.update(
|
@@ -278,11 +330,13 @@ def get_output_fn(user_id, user_symptoms):
|
|
278 |
)
|
279 |
}
|
280 |
|
|
|
|
|
281 |
data = {
|
282 |
"user_id": user_id,
|
283 |
}
|
284 |
|
285 |
-
# Retrieve the encrypted output
|
286 |
url = SERVER_URL + "get_output"
|
287 |
with requests.post(
|
288 |
url=url,
|
@@ -302,7 +356,17 @@ def get_output_fn(user_id, user_symptoms):
|
|
302 |
return {error_box6: gr.update(visible=False), srv_resp_retrieve_data_box: "Data received"}
|
303 |
|
304 |
|
305 |
-
def decrypt_fn(user_id, user_symptoms):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
if is_nan(user_id) or is_nan(user_symptoms):
|
307 |
return {
|
308 |
error_box7: gr.update(
|
@@ -343,13 +407,14 @@ def decrypt_fn(user_id, user_symptoms):
|
|
343 |
}
|
344 |
|
345 |
|
|
|
346 |
def clear_all_btn():
|
347 |
"""Clear all the box outputs."""
|
348 |
|
349 |
clean_directory()
|
350 |
|
351 |
return {
|
352 |
-
disease_box: None,
|
353 |
user_id_box: None,
|
354 |
user_vect_box1: None,
|
355 |
user_vect_box2: None,
|
@@ -382,10 +447,12 @@ CSS = """
|
|
382 |
"""
|
383 |
|
384 |
if __name__ == "__main__":
|
|
|
385 |
print("Starting demo ...")
|
|
|
386 |
clean_directory()
|
387 |
|
388 |
-
(
|
389 |
|
390 |
valid_columns = X_train.columns.to_list()
|
391 |
|
@@ -411,7 +478,7 @@ if __name__ == "__main__":
|
|
411 |
</p>
|
412 |
|
413 |
<p align="center">
|
414 |
-
<img width="100%" height="30%" src="https://raw.githubusercontent.com/kcelia/Img/main/
|
415 |
</p>
|
416 |
"""
|
417 |
)
|
@@ -430,8 +497,8 @@ if __name__ == "__main__":
|
|
430 |
check_boxes = []
|
431 |
for i, category in enumerate(SYMPTOMS_LIST):
|
432 |
with gr.Accordion(
|
433 |
-
pretty_print(category.keys()), open=
|
434 |
-
):
|
435 |
check_box = gr.CheckboxGroup(
|
436 |
pretty_print(category.values()),
|
437 |
label=pretty_print(category.keys()),
|
@@ -442,31 +509,30 @@ if __name__ == "__main__":
|
|
442 |
error_box1 = gr.Textbox(label="Error", visible=False)
|
443 |
|
444 |
# Default disease, picked from the dataframe
|
445 |
-
disease_box = gr.Dropdown(list(sorted(set(df_test["prognosis"]))),
|
446 |
-
|
447 |
-
disease_box.change(
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
)
|
452 |
|
453 |
# User symptom vector
|
454 |
-
|
455 |
-
user_vect_box1 = gr.Textbox(label="User Symptoms Vector:", interactive=False)
|
456 |
|
457 |
-
|
458 |
-
|
459 |
-
submit_button = gr.Button("Submit")
|
460 |
|
461 |
with gr.Row():
|
462 |
# Clear botton
|
463 |
clear_button = gr.Button("Reset")
|
464 |
|
465 |
submit_button.click(
|
466 |
-
fn=
|
467 |
inputs=[*check_boxes],
|
468 |
outputs=[user_vect_box1, error_box1],
|
469 |
)
|
|
|
470 |
with gr.TabItem("2. Data Encryption") as encryption_tab:
|
471 |
gr.Markdown("<span style='color:orange'>Client Side</span>")
|
472 |
gr.Markdown("## Step 2: Generate the keys")
|
@@ -482,14 +548,13 @@ if __name__ == "__main__":
|
|
482 |
with gr.Column(scale=1, min_width=600):
|
483 |
key_len_box = gr.Textbox(label="Evaluation Key Size:", interactive=False)
|
484 |
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
)
|
493 |
|
494 |
gen_key_btn.click(
|
495 |
key_gen_fn,
|
@@ -553,7 +618,7 @@ if __name__ == "__main__":
|
|
553 |
outputs=[error_box4, srv_resp_send_data_box],
|
554 |
)
|
555 |
|
556 |
-
with gr.TabItem("3.
|
557 |
gr.Markdown("<span style='color:orange'>Client Side</span>")
|
558 |
gr.Markdown("## Step 5: Run the FHE evaluation")
|
559 |
|
@@ -569,8 +634,12 @@ if __name__ == "__main__":
|
|
569 |
outputs=[fhe_execution_time_box, error_box5],
|
570 |
)
|
571 |
|
|
|
|
|
|
|
|
|
572 |
gr.Markdown(
|
573 |
-
"## Step 6: Get the data from the <span style='color:orange'>Server</span>"
|
574 |
)
|
575 |
|
576 |
error_box6 = gr.Textbox(label="Error", visible=False)
|
@@ -589,8 +658,7 @@ if __name__ == "__main__":
|
|
589 |
outputs=[srv_resp_retrieve_data_box, error_box6],
|
590 |
)
|
591 |
|
592 |
-
|
593 |
-
gr.Markdown("<span style='color:orange'>Client Side</span>")
|
594 |
gr.Markdown("## Step 7: Decrypt the output")
|
595 |
|
596 |
decrypt_target_btn = gr.Button("Decrypt the output")
|
@@ -608,7 +676,7 @@ if __name__ == "__main__":
|
|
608 |
outputs=[
|
609 |
user_vect_box1,
|
610 |
user_vect_box2,
|
611 |
-
disease_box,
|
612 |
error_box1,
|
613 |
error_box2,
|
614 |
error_box3,
|
|
|
1 |
import subprocess
|
2 |
import time
|
3 |
+
from typing import Dict, List, Tuple
|
|
|
4 |
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
|
|
27 |
subprocess.Popen(["uvicorn", "server:app"], cwd=CURRENT_DIR)
|
28 |
time.sleep(3)
|
29 |
|
30 |
+
# pylint: disable=c-extension-no-member,invalid-name
|
31 |
+
|
32 |
+
|
33 |
+
def is_nan(inputs) -> bool:
|
34 |
+
"""
|
35 |
+
Check if the input is NaN.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
inputs (any): The input to be checked.
|
39 |
+
|
40 |
+
Returns:
|
41 |
+
bool: True if the input is NaN or empty, False otherwise.
|
42 |
+
"""
|
43 |
return inputs is None or (inputs is not None and len(inputs) < 1)
|
44 |
|
45 |
|
46 |
+
# def fill_in_fn(default_disease: str, *checkbox_symptoms: Tuple[str]) -> Dict:
|
47 |
+
# """
|
48 |
+
# Fill in the gr.CheckBoxGroup list with the predefined symptoms of a selected default disease.
|
49 |
|
50 |
+
# Args:
|
51 |
+
# default_disease (str): The default disease
|
52 |
+
# *checkbox_symptoms (Tuple[str]): Tuple of selected symptoms
|
53 |
+
|
54 |
+
# Returns:
|
55 |
+
# dict: The updated gr.CheckBoxesGroup.
|
56 |
+
# """
|
57 |
+
# df = pd.read_csv(TRAINING_FILENAME)
|
58 |
+
# df_filtred = df[df[TARGET_COLUMNS[1]] == default_disease]
|
59 |
+
# symptoms = pretty_print(df_filtred.columns[df_filtred.eq(1).any()].to_list())
|
60 |
+
|
61 |
+
# if any(lst for lst in checkbox_symptoms if lst):
|
62 |
+
# for sublist in checkbox_symptoms:
|
63 |
+
# symptoms.extend(sublist)
|
64 |
+
|
65 |
+
# return {box: symptoms for box in check_boxes}
|
66 |
|
67 |
+
|
68 |
+
def get_user_symptoms_from_checkboxgroup(checkbox_symptoms: List) -> np.array:
|
69 |
+
"""
|
70 |
+
Convert the user symptoms into a binary vector representation.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
checkbox_symptoms (list): A list of user symptoms.
|
74 |
+
|
75 |
+
Returns:
|
76 |
+
np.array: A binary vector representing the user's symptoms.
|
77 |
+
|
78 |
+
Raises:
|
79 |
+
KeyError: If a provided symptom is not recognized as a valid symptom.
|
80 |
+
|
81 |
+
"""
|
82 |
+
symptoms_vector = {key: 0 for key in valid_columns}
|
83 |
for pretty_symptom in checkbox_symptoms:
|
84 |
original_symptom = "_".join((pretty_symptom.lower().split(" ")))
|
85 |
if original_symptom not in symptoms_vector.keys():
|
|
|
96 |
return user_symptoms_vect
|
97 |
|
98 |
|
99 |
+
def get_features_fn(*checked_symptoms: Tuple[str]) -> Dict:
|
100 |
+
"""
|
101 |
+
Get vector features based on the selected symptoms.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
Args:
|
104 |
+
checked_symptoms (Tuple[str]): User symptoms
|
105 |
|
106 |
+
Returns:
|
107 |
+
Dict: The encoded user vector symptoms.
|
108 |
+
"""
|
109 |
if not any(lst for lst in checked_symptoms if lst):
|
110 |
return {
|
111 |
error_box1: gr.update(
|
|
|
157 |
with evaluation_key_path.open("wb") as f:
|
158 |
f.write(serialized_evaluation_keys)
|
159 |
|
160 |
+
serialized_evaluation_keys_shorten_hex = serialized_evaluation_keys.hex()[:INPUT_BROWSER_LIMIT]
|
161 |
|
162 |
return {
|
163 |
error_box2: gr.update(visible=False),
|
|
|
167 |
}
|
168 |
|
169 |
|
170 |
+
def encrypt_fn(user_symptoms: np.ndarray, user_id: str) -> None:
|
171 |
+
"""
|
172 |
+
Encrypt the user symptoms vector in the `Client Side`.
|
173 |
+
|
174 |
+
Args:
|
175 |
+
user_symptoms (List[str]): The vector symptoms provided by the user
|
176 |
+
user_id (user): The current user's ID
|
177 |
+
"""
|
178 |
|
179 |
if is_nan(user_id) or is_nan(user_symptoms):
|
180 |
print("Error in encryption step: Provide your symptoms and generate the evaluation keys.")
|
|
|
210 |
}
|
211 |
|
212 |
|
213 |
+
def send_input_fn(user_id: str, user_symptoms: np.ndarray) -> Dict:
|
214 |
"""Send the encrypted data and the evaluation key to the server.
|
215 |
|
216 |
Args:
|
|
|
261 |
("files", open(evaluation_key_path, "rb")),
|
262 |
]
|
263 |
|
264 |
+
# Send the encrypted input and evaluation key to the server
|
265 |
url = SERVER_URL + "send_input"
|
266 |
with requests.post(
|
267 |
url=url,
|
|
|
272 |
return {error_box4: gr.update(visible=False), srv_resp_send_data_box: "Data sent"}
|
273 |
|
274 |
|
275 |
+
def run_fhe_fn(user_id: str) -> Dict:
|
276 |
+
"""Send the encrypted input as well as the evaluation key to the server.
|
277 |
|
278 |
Args:
|
279 |
user_id (int): The current user's ID.
|
|
|
280 |
"""
|
281 |
if is_nan(user_id): # or is_nan(user_symptoms):
|
282 |
return {
|
|
|
291 |
"user_id": user_id,
|
292 |
}
|
293 |
|
294 |
+
# Trigger the FHE execution on the encrypted previously sent
|
295 |
|
296 |
url = SERVER_URL + "run_fhe"
|
297 |
|
|
|
313 |
}
|
314 |
|
315 |
|
316 |
+
def get_output_fn(user_id: str, user_symptoms: np.ndarray) -> Dict:
|
317 |
+
"""Retreive the encrypted data from the server.
|
318 |
+
|
319 |
+
Args:
|
320 |
+
user_id (int): The current user's ID
|
321 |
+
user_symptoms (numpy.ndarray): The user symptoms
|
322 |
+
"""
|
323 |
+
|
324 |
if is_nan(user_id) or is_nan(user_symptoms):
|
325 |
return {
|
326 |
error_box6: gr.update(
|
|
|
330 |
)
|
331 |
}
|
332 |
|
333 |
+
|
334 |
+
|
335 |
data = {
|
336 |
"user_id": user_id,
|
337 |
}
|
338 |
|
339 |
+
# Retrieve the encrypted output
|
340 |
url = SERVER_URL + "get_output"
|
341 |
with requests.post(
|
342 |
url=url,
|
|
|
356 |
return {error_box6: gr.update(visible=False), srv_resp_retrieve_data_box: "Data received"}
|
357 |
|
358 |
|
359 |
+
def decrypt_fn(user_id: str, user_symptoms: np.ndarray) -> Dict:
|
360 |
+
"""Dencrypt the data on the `Client Side`.
|
361 |
+
|
362 |
+
Args:
|
363 |
+
user_id (int): The current user's ID
|
364 |
+
user_symptoms (numpy.ndarray): The user symptoms
|
365 |
+
|
366 |
+
Returns:
|
367 |
+
Decrypted output
|
368 |
+
"""
|
369 |
+
|
370 |
if is_nan(user_id) or is_nan(user_symptoms):
|
371 |
return {
|
372 |
error_box7: gr.update(
|
|
|
407 |
}
|
408 |
|
409 |
|
410 |
+
|
411 |
def clear_all_btn():
|
412 |
"""Clear all the box outputs."""
|
413 |
|
414 |
clean_directory()
|
415 |
|
416 |
return {
|
417 |
+
# disease_box: None,
|
418 |
user_id_box: None,
|
419 |
user_vect_box1: None,
|
420 |
user_vect_box2: None,
|
|
|
447 |
"""
|
448 |
|
449 |
if __name__ == "__main__":
|
450 |
+
|
451 |
print("Starting demo ...")
|
452 |
+
|
453 |
clean_directory()
|
454 |
|
455 |
+
(X_train, X_test), (y_train, y_test) = load_data()
|
456 |
|
457 |
valid_columns = X_train.columns.to_list()
|
458 |
|
|
|
478 |
</p>
|
479 |
|
480 |
<p align="center">
|
481 |
+
<img width="100%" height="30%" src="https://raw.githubusercontent.com/kcelia/Img/main/health_prediction_img.png">
|
482 |
</p>
|
483 |
"""
|
484 |
)
|
|
|
497 |
check_boxes = []
|
498 |
for i, category in enumerate(SYMPTOMS_LIST):
|
499 |
with gr.Accordion(
|
500 |
+
pretty_print(category.keys()), open=False, elem_classes="feedback"
|
501 |
+
) as accordion:
|
502 |
check_box = gr.CheckboxGroup(
|
503 |
pretty_print(category.values()),
|
504 |
label=pretty_print(category.keys()),
|
|
|
509 |
error_box1 = gr.Textbox(label="Error", visible=False)
|
510 |
|
511 |
# Default disease, picked from the dataframe
|
512 |
+
# disease_box = gr.Dropdown(list(sorted(set(df_test["prognosis"]))),
|
513 |
+
# label="Disease:")
|
514 |
+
# disease_box.change(
|
515 |
+
# fn=fill_in_fn,
|
516 |
+
# inputs=[disease_box, *check_boxes],
|
517 |
+
# outputs=[*check_boxes],
|
518 |
+
# )
|
519 |
|
520 |
# User symptom vector
|
521 |
+
user_vect_box1 = gr.Textbox(label="User Symptoms Vector:", interactive=False)
|
|
|
522 |
|
523 |
+
# Submit botton
|
524 |
+
submit_button = gr.Button("Submit")
|
|
|
525 |
|
526 |
with gr.Row():
|
527 |
# Clear botton
|
528 |
clear_button = gr.Button("Reset")
|
529 |
|
530 |
submit_button.click(
|
531 |
+
fn=get_features_fn,
|
532 |
inputs=[*check_boxes],
|
533 |
outputs=[user_vect_box1, error_box1],
|
534 |
)
|
535 |
+
|
536 |
with gr.TabItem("2. Data Encryption") as encryption_tab:
|
537 |
gr.Markdown("<span style='color:orange'>Client Side</span>")
|
538 |
gr.Markdown("## Step 2: Generate the keys")
|
|
|
548 |
with gr.Column(scale=1, min_width=600):
|
549 |
key_len_box = gr.Textbox(label="Evaluation Key Size:", interactive=False)
|
550 |
|
551 |
+
# Evaluation key (truncated)
|
552 |
+
with gr.Column(scale=2, min_width=600):
|
553 |
+
key_box = gr.Textbox(
|
554 |
+
label="Evaluation key (truncated):",
|
555 |
+
max_lines=3,
|
556 |
+
interactive=False,
|
557 |
+
)
|
|
|
558 |
|
559 |
gen_key_btn.click(
|
560 |
key_gen_fn,
|
|
|
618 |
outputs=[error_box4, srv_resp_send_data_box],
|
619 |
)
|
620 |
|
621 |
+
with gr.TabItem("3. FHE execution") as fhe_tab:
|
622 |
gr.Markdown("<span style='color:orange'>Client Side</span>")
|
623 |
gr.Markdown("## Step 5: Run the FHE evaluation")
|
624 |
|
|
|
634 |
outputs=[fhe_execution_time_box, error_box5],
|
635 |
)
|
636 |
|
637 |
+
with gr.TabItem("4. Data Decryption") as decryption_tab:
|
638 |
+
|
639 |
+
gr.Markdown("<span style='color:orange'>Client Side</span>")
|
640 |
+
|
641 |
gr.Markdown(
|
642 |
+
"## Step 6: Get the data from the <span style='color:orange'>Server Side</span>"
|
643 |
)
|
644 |
|
645 |
error_box6 = gr.Textbox(label="Error", visible=False)
|
|
|
658 |
outputs=[srv_resp_retrieve_data_box, error_box6],
|
659 |
)
|
660 |
|
661 |
+
|
|
|
662 |
gr.Markdown("## Step 7: Decrypt the output")
|
663 |
|
664 |
decrypt_target_btn = gr.Button("Decrypt the output")
|
|
|
676 |
outputs=[
|
677 |
user_vect_box1,
|
678 |
user_vect_box2,
|
679 |
+
# disease_box,
|
680 |
error_box1,
|
681 |
error_box2,
|
682 |
error_box3,
|
utils.py
CHANGED
@@ -113,7 +113,7 @@ def load_data() -> Tuple[pandas.DataFrame, pandas.DataFrame, numpy.ndarray]:
|
|
113 |
y_test = df_test[TARGET_COLUMNS[0]]
|
114 |
X_test = df_test.drop(columns=TARGET_COLUMNS, axis=1, errors="ignore")
|
115 |
|
116 |
-
return (
|
117 |
|
118 |
|
119 |
def load_model(X_train: pandas.DataFrame, y_train: numpy.ndarray):
|
|
|
113 |
y_test = df_test[TARGET_COLUMNS[0]]
|
114 |
X_test = df_test.drop(columns=TARGET_COLUMNS, axis=1, errors="ignore")
|
115 |
|
116 |
+
return (X_train, X_test), (y_train, y_test)
|
117 |
|
118 |
|
119 |
def load_model(X_train: pandas.DataFrame, y_train: numpy.ndarray):
|