Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM
|
4 |
+
from deepseek_vl.models import VLChatProcessor, MultiModalityCausalLM
|
5 |
+
from deepseek_vl.utils.io import load_pil_images
|
6 |
+
import spaces # Import spaces for ZeroGPU support
|
7 |
+
|
8 |
+
# Load the model and processor
|
9 |
+
model_path = "deepseek-ai/deepseek-vl-1.3b-chat"
|
10 |
+
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
|
11 |
+
tokenizer = vl_chat_processor.tokenizer
|
12 |
+
|
13 |
+
# Define the function for image description
|
14 |
+
@spaces.GPU # Ensures GPU allocation for this function
|
15 |
+
def describe_image(image):
|
16 |
+
# Define the conversation
|
17 |
+
conversation = [
|
18 |
+
{
|
19 |
+
"role": "User",
|
20 |
+
"content": "<image_placeholder>Describe this image in great detail.",
|
21 |
+
"images": [image]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"role": "Assistant",
|
25 |
+
"content": ""
|
26 |
+
}
|
27 |
+
]
|
28 |
+
|
29 |
+
# Load image and process inputs
|
30 |
+
pil_images = load_pil_images(conversation)
|
31 |
+
prepare_inputs = vl_chat_processor(
|
32 |
+
conversations=conversation,
|
33 |
+
images=pil_images,
|
34 |
+
force_batchify=True
|
35 |
+
).to('cuda')
|
36 |
+
|
37 |
+
# Run the image encoder to get embeddings
|
38 |
+
vl_gpt = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(torch.bfloat16).cuda().eval()
|
39 |
+
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
|
40 |
+
|
41 |
+
# Generate response from the model
|
42 |
+
outputs = vl_gpt.language_model.generate(
|
43 |
+
inputs_embeds=inputs_embeds,
|
44 |
+
attention_mask=prepare_inputs.attention_mask,
|
45 |
+
pad_token_id=tokenizer.eos_token_id,
|
46 |
+
bos_token_id=tokenizer.bos_token_id,
|
47 |
+
eos_token_id=tokenizer.eos_token_id,
|
48 |
+
max_new_tokens=512,
|
49 |
+
do_sample=False,
|
50 |
+
use_cache=True
|
51 |
+
)
|
52 |
+
|
53 |
+
# Decode the generated tokens into text
|
54 |
+
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
|
55 |
+
return answer
|
56 |
+
|
57 |
+
# Gradio interface
|
58 |
+
def gradio_app():
|
59 |
+
with gr.Blocks() as demo:
|
60 |
+
gr.Markdown("# Image Description with DeepSeek VL 1.3b\n### Upload an image to receive a detailed description.")
|
61 |
+
|
62 |
+
with gr.Row():
|
63 |
+
image_input = gr.Image(type="pil", label="Upload an Image")
|
64 |
+
|
65 |
+
output_text = gr.Textbox(label="Image Description", interactive=False)
|
66 |
+
|
67 |
+
submit_btn = gr.Button("Generate Description")
|
68 |
+
|
69 |
+
submit_btn.click(
|
70 |
+
fn=describe_image,
|
71 |
+
inputs=[image_input],
|
72 |
+
outputs=output_text
|
73 |
+
)
|
74 |
+
|
75 |
+
demo.launch()
|
76 |
+
|
77 |
+
# Launch the Gradio app
|
78 |
+
gradio_app()
|